**The Classic of Touch Solution!** 

# **GREENCHIP**

## Green<sup>Touch<sup>™</sup></sup> GT108M Capacitive Touch Sensor

**SPECIFICATION** 

www.greenchip.co.kr

## GREENCHIP

#### GENERAL

The GT108M is one of GreenTouch<sup>™</sup> capacitive touch sensor series. Especially the GT108M can do capacitance sensing up to 8 channels under GreenTouch<sup>™</sup> engine operation. GreenTouch<sup>™</sup> engine is an environmental compensation circuit. Thanks to GreenTouch<sup>™</sup> engine, the application will be more robust and problem free against EMC, EMI, H/W variation, voltage disturbance, temperature drift, humidity drift and so on.

The GT108M offers 8 LED drivers with 16 steps dimming controller. The OUT[1:8] ports are using for PWM output for LED dimming control. It's very economical solution when the LED feedbacks are required because there is no additional material cost for LED control.

The input ports SIN[1:8] are using basically for capacitive touch sensing furthermore these ports can be also used for tact switch input without any external component. For getting the result, the  $I^2C$  or 1 to 1 direct output interface will be using same as getting touch sensor output. It might be one of the efficient features when the MCU IO or connector resource is not enough in the application.

#### FEATURES

- 8 channels cap. Sensing input
- Embedded GreenTouch<sup>™</sup> Engine
  - Analog compensation circuit
  - Embedded digital noise filter
  - Intelligent sensitivity calibration
- Two type interface support
   1 to 1 direct interface mode
   I<sup>2</sup>C interface mode
- Provide interrupt function
- LED driver (16 steps dimming control)
- Available tact switch input interface without external pull-up
- Incredible low power consumption
  - Active mode: 160uA (@3.0V)
  - Normal mode: 130uA (@3.0V)
  - Sleep mode: 2.5uA (@3.0V)
- VDD range: 2.5V to 3.3V Single supply operation
- LDO enable port control for MCU power saving
- IR input protection
- Available only in 32QFN 5x5 package
- Package type
   32QFN 5x5 package
- RoHS complaints

#### BLOCK DIAGRAM



#### APPLICATIONS

- Portable Electronics Mobile phone, MP3, PMP, PDA, Navigation, Digital Camera, Video Camera and Etc.
- Multimedia Devices TV, DVD player, Blue ray player, Digital photo frame, Home theater system and Etc.
- Home Appliance Refrigerator, Air cleaner, Air conditioner, Washing machine, Micro wave oven and Etc.
- PC, OA and Others PC, LCD monitor, Fax, Copy machine, Door lock, Lighting controls, Remote control, Toys, Gaming devices and Etc.

#### **ORDERING INFORMATION**

| Part No.   | Package    |
|------------|------------|
| GT108M-QN5 | 32QFN 5x5  |
| GT108M-UQ4 | 24UQFN 4x4 |
| GT108M-QSO | 24QSOP     |

#### **REVISION HISTORY**

| Version      | Date           | Revision Contents                                                 |
|--------------|----------------|-------------------------------------------------------------------|
| PRELIMINARY  | June 2009      | Preliminary release                                               |
| PRELIMINARY1 | July 2009      | Add 24UQFN package information                                    |
| V1.0         | August 2009    | Release version                                                   |
| V2.1         | September 2009 | Update for revised register map<br>Add 24QSOP package information |
| V2.2         | October 2009   | Update for revised factor default values                          |

Copyright © 2009 by GreenChip Inc. - All Rights RESERVE.

GreenChip owns all right, title and interest in the property and products described herein, unless otherwise indicated. No part of this document may be translated to another language or produced or transmitted in any form or by any information storage and retrieval system without written permission from GreenChip. GreenChip reserves the right to change products and specifications without written notice. Customers are advised to obtain the latest versions of any product specifications.

GREENCHIP MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OTHER THAN COMPLIANCE WITH THE APPLICABLE GREENCHIP SPECIFICATION SHEET FOR THE PRODUCT AT THE TIME OF DELIVERY. IN NO EVENT SHALL GREENCHIP BE LIABLE FOR ANY INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES AS A RESULT OF THE PRODUCT'S PERFORMANCE OR FAILURE TO MEET ANY ASPECT OF SUCH SPECIFICATION. GREENCHIP PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN LIFE SUPPORT APPLIANCES, DEVICES OR SYSTEMS WHERE A MALFUNCTION OF A GREENCHIP DEVICE COULD RESULT IN A PERSONAL INJURY OR LOSS OF LIFE. CUSTOMERS USING OR SELLING GREENCHIP DEVICES FOR USE IN SUCH APPLICATIONS DO SO AT THEIR OWN RISK AND AGREE TO FULLY INDEMNIFY GREENCHIP FOR ANY DAMAGES RESULTING FROM SUCH IMPROPER USE OR SALE.

Information contained herein is presented only as a guide for the applications of our products. GreenChip does not warrant this product to be free of claims of patent infringement by any third party and disclaims any warranty or indemnification against patent infringement. No responsibility is assumed by GreenChip for any patent infringement resulting from use of its products by themselves or in combination with any other products. No license is hereby granted by implication or otherwise under any patent or patent rights of GreenChip.

The GreenChip logo is a registered trademark of GreenChip.

www.greenchip.co.kr

October 2009 rev v2.2

#### GreenTouch<sup>™</sup> Series GT108M Capacitive Touch Sensor

#### Contents

| GENERAL          | 2   |
|------------------|-----|
|                  | 2   |
|                  | 2   |
|                  | 2   |
|                  | 2   |
|                  | 2   |
| REVISION HISTORY | - 3 |

#### Chapter 1: Pinout Information

| 1-1 32 QFN Pinout  | 5 |
|--------------------|---|
| 1-2 24 UQFN Pinout | 6 |
| 1-3 24 QSOP Pinout | 7 |

| Chapter 2 | 2: | Electrical | Specification |
|-----------|----|------------|---------------|
|           |    |            |               |

| 2-1 Absolute Maximum Batings                          | a  |
|-------------------------------------------------------|----|
|                                                       | 5  |
| 2-2 DC & Operating Characteristics                    | 9  |
| 2-3 ESD & Latch-Up Characteristics                    | 10 |
| 2-4 I <sup>2</sup> C Interface Timing Characteristics | 11 |
| 2-5 MTP Program/Read Conditions                       | 12 |

| Chapter 3: | Functional | Description |
|------------|------------|-------------|
|------------|------------|-------------|

| 3-1 Reset and Operation Modes         | 13 |
|---------------------------------------|----|
| 3-2 Capacitance Variation Sensing     | 14 |
| 3-3 Tact Switch Input                 | 14 |
| 3-4 LED PWM Drive                     | 15 |
| 3-5 LDO On-Off Control                | 16 |
| 3-6 IR Input Protection               | 16 |
| 3-7 Data Output Interfaces            | 17 |
| 3-8 I <sup>2</sup> C Interface        | 18 |
| 3-9 Initial Operation Values Changing | 19 |

| Chapter 4: Register Description  |    |
|----------------------------------|----|
| 4-1 I2C Write and Read Operation | 20 |
| 4-2 Register Map                 | 20 |

| 4-2 Register Map         | 20 | υ |
|--------------------------|----|---|
| 4-3 Register Description | 2  | 1 |
|                          | ~  | • |
|                          |    |   |

#### **Chapter 5: Application Notes**

| 5-1 ( | Circuit Examples for Various Applications | 27 |
|-------|-------------------------------------------|----|
| 5-2 / | Application Notes                         | 29 |

### 

#### **Chapter 1: Pinout Information**

This section describes the lists and illustrates the GT108M of GreenTouch<sup>TM</sup> family ports as well as pinout configuration. The GT108M device is available in the following packages, all of which are shown on the following pages.

|                | i mout |       |                                                                      |
|----------------|--------|-------|----------------------------------------------------------------------|
| Port<br>Number | Туре   | Name  | Description                                                          |
| 1              | -      | N.C.  | No Connection                                                        |
| 2              | -      | N.C.  | No Connection                                                        |
| 3              | AI     | SIN 5 | Channel 5: Capacitance Sensing or Tact switch Input port             |
| 4              | AI     | SIN 6 | Channel 6: Capacitance Sensing or Tact switch Input port             |
| 5              | AI     | SIN 7 | Channel 7: Capacitance Sensing or Tact switch Input port             |
| 6              | AI     | SIN 8 | Channel 8: Capacitance Sensing or Tact switch Input port             |
| 7              | DI     | I_IR  | IR Noise Protection Input port                                       |
| 8              | DO     | OLDO  | LDO Control Output port                                              |
| 9              | -      | N.C.  | No Connection                                                        |
| 10             | DI     | SCL   | I <sup>2</sup> C Serial Clock                                        |
| 11             | -      | N.C.  | No Connection                                                        |
| 12             | DIO    | SDA   | I <sup>2</sup> C Serial Data                                         |
| 13             | GND    | GND   | Ground Connection                                                    |
| 14             | PWR    | VPP   | Supply Voltage for MTP Programming                                   |
| 15             | -      | N.C.  | No Connection                                                        |
| 16             | DI     | RST   | Reset Control Port (High active)                                     |
| 17             | DO     | OUT 1 | 1 to 1 Direct Output for SIN 1<br>PWM Output for LED Dimming Control |
| 18             | DO     | OUT 2 | 1 to 1 Direct Output for SIN 2<br>PWM Output for LED Dimming Control |
| 19             | DO     | OUT 3 | 1 to 1 Direct Output for SIN 3<br>PWM Output for LED Dimming Control |
| 20             | DO     | OUT 4 | 1 to 1 Direct Output for SIN 4<br>PWM Output for LED Dimming Control |
| 21             | -      | N.C.  | No Connection                                                        |
| 22             | DO     | OUT 5 | 1 to 1 Direct Output for SIN 5<br>PWM Output for LED Dimming Control |
| 23             | DO     | OUT 6 | 1 to 1 Direct Output for SIN 6<br>PWM Output for LED Dimming Control |
| 24             | DO     | OUT 7 | 1 to 1 Direct Output for SIN 7<br>PWM Output for LED Dimming Control |
| 25             | DO     | OUT 8 | 1 to 1 Direct Output for SIN 8<br>PWM Output for LED Dimming Control |
| 26             | -      | N.C.  | No Connection                                                        |
| 27             | DO     | INT   | Interrupt Output                                                     |
| 28             | PWR    | VDD   | Supply Voltage                                                       |
| 29             | AI     | SIN 1 | Channel 1: Capacitance Sensing or Tact switch Input port             |
| 30             | AI     | SIN 2 | Channel 2: Capacitance Sensing or Tact switch Input port             |
| 31             | AI     | SIN 3 | Channel 3: Capacitance Sensing or Tact switch Input port             |
| 32             | AI     | SIN 4 | Channel 4: Capacitance Sensing or Tact switch Input port             |

## 1 1 32 QFN Pinout

\* DI: Digital Input, DO: Digital Output, DIO: Digital Input and Output, AI: Analog Input, PWR: POWER

#### 1.2 24 UQFN Pinout

| Port<br>Number | Туре | Name  | Description                                                          |
|----------------|------|-------|----------------------------------------------------------------------|
| 1              | AI   | SIN 4 | Channel 4: Capacitance Sensing or Tact switch Input port             |
| 2              | AI   | SIN 5 | Channel 5: Capacitance Sensing or Tact switch Input port             |
| 3              | AI   | SIN 6 | Channel 6: Capacitance Sensing or Tact switch Input port             |
| 4              | AI   | SIN 7 | Channel 7: Capacitance Sensing or Tact switch Input port             |
| 5              | AI   | SIN 8 | Channel 8: Capacitance Sensing or Tact switch Input port             |
| 6              | DO   | OLDO  | LDO Control Output port                                              |
| 7              | DI   | SCL   | I <sup>2</sup> C Serial Clock                                        |
| 8              | DIO  | SDA   | I <sup>2</sup> C Serial Data                                         |
| 9              | GND  | GND   | Ground Connection                                                    |
| 10             | PWR  | VPP   | Supply Voltage for MTP Programming                                   |
| 11             | DI   | RESET | Reset Control Port (High active)                                     |
| 12             | DO   | OUT 1 | 1 to 1 Direct Output for SIN 1<br>PWM Output for LED Dimming Control |
| 13             | DO   | OUT 2 | 1 to 1 Direct Output for SIN 2<br>PWM Output for LED Dimming Control |
| 14             | DO   | OUT 3 | 1 to 1 Direct Output for SIN 3<br>PWM Output for LED Dimming Control |
| 15             | DO   | OUT 4 | 1 to 1 Direct Output for SIN 4<br>PWM Output for LED Dimming Control |
| 16             | DO   | OUT 5 | 1 to 1 Direct Output for SIN 5<br>PWM Output for LED Dimming Control |
| 17             | DO   | OUT 6 | 1 to 1 Direct Output for SIN 6<br>PWM Output for LED Dimming Control |
| 18             | DO   | OUT 7 | 1 to 1 Direct Output for SIN 7<br>PWM Output for LED Dimming Control |
| 19             | DO   | OUT 8 | 1 to 1 Direct Output for SIN 8<br>PWM Output for LED Dimming Control |
| 20             | DO   | INT   | Interrupt Output                                                     |
| 21             | PWR  | VDD   | Supply Voltage                                                       |
| 22             | AI   | SIN 1 | Channel 1: Capacitance Sensing or Tact switch Input port             |
| 23             | AI   | SIN 2 | Channel 2: Capacitance Sensing or Tact switch Input port             |
| 24             | ΔΙ   | SIN 3 | Channel 3: Canacitance Sensing or Tact switch Input port             |

 24
 AI
 SIN 3
 Channel 3: Capacitance Sensing or Tact switch Input port

 \* DI: Digital Input, DO: Digital Output, DIO: Digital Input and Output, AI: Analog Input, PWR: POWER

#### 1.3 24 QSOP Pinout

| Port<br>Number | Туре | Name  | Description                                                          |
|----------------|------|-------|----------------------------------------------------------------------|
| 1              | AI   | SIN 1 | Channel 1: Capacitance Sensing or Tact switch Input port             |
| 2              | AI   | SIN 2 | Channel 2: Capacitance Sensing or Tact switch Input port             |
| 3              | AI   | SIN 3 | Channel 3: Capacitance Sensing or Tact switch Input port             |
| 4              | AI   | SIN 4 | Channel 4: Capacitance Sensing or Tact switch Input port             |
| 5              | AI   | SIN 5 | Channel 5: Capacitance Sensing or Tact switch Input port             |
| 6              | AI   | SIN 6 | Channel 6: Capacitance Sensing or Tact switch Input port             |
| 7              | AI   | SIN 7 | Channel 7: Capacitance Sensing or Tact switch Input port             |
| 8              | AI   | SIN 8 | Channel 8: Capacitance Sensing or Tact switch Input port             |
| 9              | DO   | OLDO  | LDO Control Output port                                              |
| 10             | DI   | SCL   | I <sup>2</sup> C Serial Clock                                        |
| 11             | DIO  | SDA   | I <sup>2</sup> C Serial Data                                         |
| 12             | GND  | GND   | Ground Connection                                                    |
| 13             | PWR  | VPP   | Supply Voltage for MTP Programming                                   |
| 14             | DI   | RESET | Reset Control Port (High active)                                     |
| 15             | DO   | OUT 1 | 1 to 1 Direct Output for SIN 1<br>PWM Output for LED Dimming Control |
| 16             | DO   | OUT 2 | 1 to 1 Direct Output for SIN 2<br>PWM Output for LED Dimming Control |
| 17             | DO   | OUT 3 | 1 to 1 Direct Output for SIN 3<br>PWM Output for LED Dimming Control |
| 18             | DO   | OUT 4 | 1 to 1 Direct Output for SIN 4<br>PWM Output for LED Dimming Control |
| 19             | DO   | OUT 5 | 1 to 1 Direct Output for SIN 5<br>PWM Output for LED Dimming Control |
| 20             | DO   | OUT 6 | 1 to 1 Direct Output for SIN 6<br>PWM Output for LED Dimming Control |
| 21             | DO   | OUT 7 | 1 to 1 Direct Output for SIN 7<br>PWM Output for LED Dimming Control |
| 22             | DO   | OUT 8 | 1 to 1 Direct Output for SIN 8<br>PWM Output for LED Dimming Control |
| 23             | DO   | INT   | Interrupt Output                                                     |
| 24             | PWR  | VDD   | Supply Voltage                                                       |

\* DI: Digital Input, DO: Digital Output, DIO: Digital Input and Output, AI: Analog Input, PWR: POWER

#### GT108M





Refer to Chapter 6: Package Information for package outer scale

#### **Chapter 2: Electrical Specification**

#### 2-1 Absolute Maximum Ratings

| Parameter                           | Symbol                       | Min  | Мах                  | Units | Conditions |
|-------------------------------------|------------------------------|------|----------------------|-------|------------|
| Maximum supply voltage              | $V_{DD\_MAX}$                | -    | 5.0                  | V     |            |
| Supply voltage range <sup>(1)</sup> | $V_{DD_RNG}$                 | 2.0  | 4.0                  | V     |            |
| Voltage on any input port           | $V_{\text{IN}_{\text{MAX}}}$ | -    | V <sub>DD</sub> +0.3 | V     |            |
| Maximum current into any port       | I <sub>MIO</sub>             | -200 | 200                  | mA    |            |
| Power dissipation                   | P <sub>MAX</sub>             | -    | 800                  | mW    |            |
| Storage temperature                 | T <sub>STG</sub>             | -65  | 150                  | °C    |            |
| Operating humidity                  | H <sub>OP</sub>              | 5    | 95                   | %     | 8 hours    |
| Operating temperature               | T <sub>OPR</sub>             | -40  | 85                   | °C    |            |
| Junction temperature                | TJ                           | -40  | 125                  | °C    |            |

(1) The real valid power supply voltage range consider supply ripple. Above range cannot be used as target supply voltage range.

#### 2-2 DC & Operating Characteristics

| Parameter                                             | Symbol               | Conditions                                    | Min.                 | Тур. | Max.                 | Unit |
|-------------------------------------------------------|----------------------|-----------------------------------------------|----------------------|------|----------------------|------|
| Power supply and current                              | nt consum            | ption                                         |                      |      |                      |      |
| Target supply voltage                                 | V <sub>DD</sub>      |                                               | 2.5                  | 3.0  | 3.3                  | V    |
| Supply voltage for MTP<br>programming                 | $V_{PP}$             | Max. 6.5seconds                               | 6.2                  | 6.5  | 6.75                 | V    |
| Max VPP power maintain<br>time                        | T <sub>VPP_MAX</sub> | $V_{PP} = 6.5V$                               | -                    | 6.5  | -                    | sec  |
|                                                       |                      | Slow clock operation <sup>(3)</sup>           | -                    | 90   | 150                  |      |
| Current Consumption                                   | I <sub>DD</sub>      | Normal clock operation <sup>(3)</sup>         | -                    | 130  | 200                  | μA   |
|                                                       |                      | Fast clock operation <sup>(3)</sup>           | -                    | 180  | 220                  |      |
| Sleep mode current<br>consumption                     | I <sub>DD_SL</sub>   | Sleep mode                                    | -                    | 2.5  | 4                    | μA   |
| Internal reset voltage <sup>(2)</sup>                 | $V_{DD_{RST}}$       | $T_A = 25^{\circ}C$                           | -                    | 1.4  | 1.8                  | V    |
| Digital input/output                                  |                      |                                               |                      |      |                      |      |
| Input high level voltage                              | V <sub>IH</sub>      |                                               | V <sub>DD</sub> *0.7 | -    | V <sub>DD</sub> +0.3 | V    |
| Input low level voltage                               | VIL                  |                                               | -0.3                 | -    | V <sub>DD</sub> *0.3 | V    |
| Internal pull-up resistor<br>(Ports : I_IR, SCL, SDA) | R <sub>PU</sub>      | Pull-up resistor enable                       | -                    | 40   | -                    | kΩ   |
| Internal pull-down resistor<br>(Port : RST)           | R <sub>PD</sub>      |                                               | -                    | 40   | -                    | kΩ   |
| Output sink current<br>(LED drivable)                 | I <sub>SINK</sub>    | Active low output <sup>(4)</sup>              | -                    | 15   | -                    | mA   |
| Output impedance to GND                               | 7                    | Active low output (Low level) <sup>(4)</sup>  | -                    | 15   | -                    | Ω    |
| (NMOS)                                                | ZON                  | Active low output (High level) <sup>(4)</sup> | -                    | 30   | -                    | MΩ   |
| Output source current                                 | I <sub>SRC</sub>     | Active high output <sup>(4)</sup>             | -                    | 4    | -                    | mA   |
| Output impedance to VDD                               | 7                    | Active high output (Low level) <sup>(4)</sup> | -                    | 30   | -                    | MΩ   |
| (PMOS)                                                | ZOP                  | Active high output (High level) (4)           | -                    | 30   | -                    | Ω    |
| Output PWM duty steps<br>(LED brightness steps)       | N <sub>DUTY</sub>    | LED output                                    | -                    | 16   | -                    | step |
| Maximum PWM low duty<br>(Maximum brightness)          | D <sub>MAX(L)</sub>  | LED output                                    | -                    | 88   | -                    | %    |
| Minimum PWM low duty<br>(LED off)                     | D <sub>MIN(L)</sub>  | LED output                                    | -                    | 0    | -                    | %    |

 (1) Test condition: V<sub>DD</sub> = 3.0V, TA = 25 °C and normal operation mode (Unless otherwise noted)
 (2) The GT108M has internal reset circuit, so external reset element or reset signal is not always necessary for power reset. (3) The operation mode can be selected by option register setting. Refer to Chapter 4: Register Description.

(d) The operation mode can be believed by option register betaing. Note to ondered 4, register becamption.
 (4) All the outputs can be selected as open-drain NMOS structure (Active Low) or as open drain PMOS structure (Active High).

#### **ELECTRICAL SPECIFICATION**

| Parameter                                          | Symbol               | Conditions                                    | Min. | Тур. | Max. | Unit |
|----------------------------------------------------|----------------------|-----------------------------------------------|------|------|------|------|
| Timing and operations                              |                      |                                               |      |      |      |      |
| Time for stable power reset                        | T <sub>RST</sub>     |                                               | -    | 100  | -    | msec |
| Sense detection expire time                        | T <sub>EXP</sub>     |                                               | -    | 15   | -    | sec  |
| Minimum RST high pulse<br>width for external reset | T <sub>P_ERST</sub>  | Active high reset                             | 10   | -    | -    | usec |
| Maximum I <sup>2</sup> C communication speed       | Fc                   | Maximum internal I <sup>2</sup> C support CLK | -    | 600k | -    | bps  |
| Minimum detectable input<br>capacitance variation  | $\Delta C_{S_{MIN}}$ |                                               | 0.1  | -    | -    | pF   |
| Sensitivity selection steps                        | N <sub>SEN</sub>     |                                               | -    | 60   | -    | step |
| Sense internal series resistor                     | Rs                   |                                               | -    | 140  | -    | Ω    |
| Max. sense external series resistor                | $R_{S_EX}$           |                                               | -    | -    | 1    | kΩ   |
| Tact input pull-up current<br>(SIN1~SIN8)          | I <sub>T_PU</sub>    | Tact input mode                               | -    | 5    | -    | μA   |
| Sense hold time for IR                             | T <sub>H_IR</sub>    |                                               | -    | 140  | -    | msec |

#### 2-3 ESD & Latch-Up Characteristics

#### 2-3.1 ESD Characteristics

| Mode  | Polarity            | Мах        | Reference |
|-------|---------------------|------------|-----------|
|       |                     |            | VDD       |
| H.B.M | POSITIVE / NEGATIVE | Over 8000V | VSS       |
|       |                     |            | P to P    |
|       |                     | 1200V      | VDD       |
| M.M   | POSITIVE / NEGATIVE | 1000V      | VSS       |
|       |                     | 700V       | P to P    |
| C.D.M | POSITIVE / NEGATIVE | 800V       | DIRECT    |

#### 2-3.2 Latch-Up Characteristics

| Mode               | Polarity | Max    | Test Step |  |
|--------------------|----------|--------|-----------|--|
| LTest              | POSITIVE | 200mA  | 25m /     |  |
| T TEST             | NEGATIVE | -200mA | Zoma      |  |
| V supply over 3.3V | POSITIVE | ~ 5.0V | 0.5V      |  |

## 2-4 l<sup>2</sup>C Interface Timing Characteristics2-4.1 Timing Diagram for SCL, SDA



Start Condition

Stop Condition

| Symbol             | Characteris                | tic         | Min | Max | Units | Conditions                   |
|--------------------|----------------------------|-------------|-----|-----|-------|------------------------------|
| T <sub>STA_S</sub> | Start condition satur time | 100KHz mode | 4.7 | -   | usec  | Only relevant for repeated   |
|                    | Start condition setup time | 400KHz mode | 1.0 | -   | usec  | START condition              |
| T <sub>STA_H</sub> | Start condition hold time  | 100KHz mode | 4.0 | -   | usec  | After this period, the first |
|                    | Start condition hold time  | 400KHz mode | 1.0 | -   | usec  | clock pulse is generated     |
| т                  | Stop condition actus time  | 100KHz mode | 4.7 | -   | usec  |                              |
| I STO_S            | Stop condition setup time  | 400KHz mode | 1.0 | -   | usec  |                              |
| Т <sub>sto_н</sub> | Stop condition hold time   | 100KHz mode | 4.0 | -   | usec  |                              |
|                    | Stop condition hold time   | 400KHz mode | 1.0 | -   | usec  |                              |

#### Timing Diagram for SCL, SDA In/Out 2-4.2



| Symbol         | Characteris              | tic         | Min      | Мах   | Unit | Conditions              |  |
|----------------|--------------------------|-------------|----------|-------|------|-------------------------|--|
| т              | Clock high time          | 100KHz mode | 4000     | -     | ns   |                         |  |
| I HIGH         | Clock high lime          | 400KHz mode | 1000     | -     | ns   |                         |  |
| т              | Clock low time           | 100KHz mode | 4700     | -     | ns   |                         |  |
| LOW            | Clock low little         | 400KHz mode | 1300     | -     | ns   |                         |  |
| T              | Data laput actus tima    | 100KHz mode | 250      | -     | ns   |                         |  |
| I DAT_S        | Data input setup time    | 400KHz mode | 100      | -     | ns   | -                       |  |
| т              | Data input hold time     | 100KHz mode | 0        | 3500  | ns   |                         |  |
| I DAT_H        | Data input noid time     | 400KHz mode | 0        | 900   | ns   | -                       |  |
| т              | Output valid from clock  | 100KHz mode | -        | 2 clk | ns   | System alook            |  |
| IAA            | Output valid from clock  | 400KHz mode | -        | 2 clk | ns   | System clock            |  |
| т.             | SDA and SCL rising time  | 100KHz mode | -        | 1000  | ns   | The range of Cb is from |  |
| IR             | SDA and SCL IIsing time  | 400KHz mode | 20+0.1Cb | 300   | ns   | 10pF to 400pF.          |  |
| т              | SDA and SCL folling time | 100KHz mode | -        | 300   | ns   | The range of Cb is from |  |
| T <sub>F</sub> | SDA and SCL failing time | 400KHz mode | 20+0.1Cb | 300   | ns   | 10pF to 400pF.          |  |

#### **ELECTRICAL SPECIFICATION**

#### 2-5 MTP Program/Read Conditions<sup>(1)</sup>

| Operating Mode | Power Port         | Min  | Typical | Max    | Unit |
|----------------|--------------------|------|---------|--------|------|
|                | VDD                | 2.5  | 3.0     | 3.3    | V    |
| Read Mode      | VPP <sup>(2)</sup> |      | Open o  | or VDD |      |
|                | VSS                | 0    | 0       | 0      | V    |
|                | VDD                | 2.5  | 3.0     | 3.3    | V    |
| PGM Mode       | VPP                | 6.25 | 6.5     | 6.75   | V    |
|                | VSS                | 0    | 0       | 0      | V    |

Power supply voltage beyond above range is not guaranteed. Power/Ground bouncing beyond DC operating range might cause invalid data output.
 In read mode, VPP port must be connected VDD or floating. Connection to GND may cause current problems.

#### **Function Description**

#### **Chapter 3: Functional Description**

#### 3-1 Reset and Operation Modes

The GT108M has both internal and external reset operations. The internal reset operation is used for initial power reset and the external reset operation is done by RST. High pulse signal by RST is for an abrupt reset which is required for intensive system reset. The RST port might be floating and no more external reset components are required when the external reset is not in use. The internal power reset sequence is represented as below.



The internal V<sub>DELAY</sub> voltage starts to rise when V<sub>DD</sub> come up to V<sub>DD\_RST</sub> level. The internal reset pulse is maintained as low between t1 and t2. During this low pulse period, the internal power reset operation is finished. The external reset by RST port is activated in high input pulse period. The intensive system reset can be easily obtained by this high pulse input to the RST port. More than 10usec high pulse period is required for proper reset. The RST port has an internal pull-down resistor with 40k $\Omega$ . Therefore, the RST port might be floating during normal operation time.

The three clock operations could be selected by SYS\_CLK\_SEL register. The internal system clock and frequency bands of sense signal should change according to this selection. The current consumption will then increase as system and sense clock increases. The system and sense clock frequency are about 30% faster in fast clock operation and about 30% slower in slow clock operation than in normal clock operation. The typical current consumption curves on each operation mode of GT108M are represented in accordance with  $V_{DD}$  voltage as below.



Typical Current consumption curve of GT108M (At 40msec sensing period register setting condition)

#### 3-2 Capacitance Variation Sensing (SIN1~SIN8)

The SIN ports from SIN1 to SIN8 are typically used for detecting capacitance variation sensing. Moreover, the SIN ports could be used with tact switch without any external components. But the SIN ports can't be used for both capacitance variations sensing function and tact switch simultaneously. (*Refer to 3-3 in this chapter.*)

The GT108M has various intelligent sensing properties to detect correct touch free from error caused by various environmental effects. These advanced sensing methods will help faultless touch key systems under the worst conditions. The sensitivity selection is available within 64 steps and there will be no difficulty to satisfy systems require sensitivity. The internal intelligent sensitivity calibration removes sensitivity rolling caused by system noise, circuit deviation, and circumstantial drift. The sensitivity calibration is done independently on each channel. The GT108M has a special noise elimination filter for more powerful noise rejection and it will be very helpful for proper touch operation even if the system environment becomes very deteriorative. And another additional function which ignores a non-intention short touch is possible by changing sensing period. The longer sensing period will need longer touch input to get valid touch detection.

The sensitivity, calibration, noise filter gain control, and sensing period control are available with dedicated control registers. For more detail information, please refer to *Chapter 4: Register Description*.

The GT108M SIN ports have an internal series resistor for ESD protection. But in any case, if the additional external series resistors are required then it should be less than  $1k\Omega$  and the location of resister is recommended as closer to the SIN ports.



Implementation for SIN ports with external components and sensing pad.

#### 3-3 Tact Switch Input (SIN1~SIN8)

The SIN ports can also be used with tact switch. The mode for tact switch input is selected by TACT\_CH\_EN register (Address: 0x06). The SIN ports with tact switch input should be connected to GND through tact switch as below implementation figure. The internal pull-up current of tact switch input channel is self activated hence there is no need to use external pull-up resistor. The typical value of internal pull-up current is 5uA. The benefits of this function are that it does not require any additional pull-up resistors and connection port to MCU for tact switch implementation. The outputs can be obtained by 1 to 1 direct output ports or by reading output data register using l<sup>2</sup>C interface.



Implementation of SIN ports for tact switch inputs and touch sensing inputs

#### 3-4 LED PWM Drive (OUT1~OUT8)

The LED PWM drive is available by using output ports from OUT1 to OUT8. The brightness of LED can be controlled by 16 steps PWM duty with PWM control register. (*For more detail information, please refer to chapter 4: Register Description.*) The maximum LED brightness is on 88% duty and the minimum is on 0% duty. The maximum sink current is 15mA on each port in typical condition. The OUT ports can't be used for touch sensing output when it is used for driving LED. The basic implementation for LED PWM drive is shown in below figure.



Implementation for LED PWM drive

#### **Function Description**

#### 3-5 LDO On-Off Control (OLDO)

The OLDO output port is changed from LDO-off to LDO-on state by detecting a capacitive touch or tact switch when the LDO\_CTL bit is set. And the polarity of LDO-on and LDO-off state is decided by LDO\_POL bit. This function is useful for saving system power consumption through shutting-down LDO (Low Drop Output Regulator). The OLDO port has open drain NMOS or PMOS structure therefore the external pull-up resistor or pull-down resistor is required.



#### OLDO output signal setting/recover and signal polarity

#### 3-6 IR Input Protection (I\_IR)

The GT108M can detect a falling edge on the input signal that is coming through I\_IR port when IR\_EN bit is set. All the operations of GT108M will enter into a holding status when the input signal on the I\_IR port becomes a falling edge. This function prevents from IR interference caused by touch sensing clock or system clock noise. The GT108M will wait a rising edge of input signal during it is in holding status. The hold time is adopted from a rising edge and the GT108M will enter into a holding status again if the signal is coming again with a falling edge within hold time. The hold time can be selected by IR\_HOLD\_TIME bit. It'll be 70msec or 140msec. The GT108M will start again normal operation if the time is over than the hold time from a rising edge on I\_IR input signal.



Sensing system hold interval and Hold time

#### **Function Description**

#### 3-7 Data Output Interfaces (OUT1~OUT8)

The GT108M has two different types of output interface methods. The one is a 1 to 1 direct output which is using the output ports from OUT1 to OUT8 and the other one is  $I^2C$  interface. This two interface methods are able to operate simultaneously. The 1 to 1 direct output ports OUTx corresponds to SINx respectively. These 1 to 1 output ports have an active low or high function. The output active polarity could be changed with DIR\_OUT\_POL bit and all OUTx ports will have same active polarity. The OUTx ports will have open drain NMOS structure and it needs pull-up resistors when the OUTx ports are set by active low mode. It will have open drain PMOS structure and it needs pull-down resistors. The implementations for both two active modes are shown in below figures.



Implementation of OUTx ports used as active low mode



Implementation of OUTx ports used as active high mode

#### 3-8 I<sup>2</sup>C Interface (SCL, SDA, INT)

The SCL and SDA ports are used for  $I^2C$  interface. The SCL is  $I^2C$  clock input port and the SDA is  $I^2C$  data input/output port. These ports have an internal optional pull-up resistor which is about 40k $\Omega$  to prevent open gate leakage current in input mode. Therefore it can be floating when the  $I^2C$  interface isn't in use. The internal optional pull-up resistor is enabled by default. For high speed communication, the SDA port needs lower value resistor which is connected to V<sub>DD</sub> to reduce pulse rising delay. The internal simple block structure of SCL and SDA is shown below. The GT108M has an internal  $I^2C$  clock oscillator and it is selectable by SCL\_CLK\_SEL register. The maximum data-rate is about 600Kbps. For a timing of  $I^2C$  interface, please refer to the section 2-4. The program and read operations for MTP are also using the  $I^2C$  interface.



Internal I<sup>2</sup>C interface structure of GT108M

The GT108M provides an interrupt (INT) function to reduce a communication load between MCU and GT108M. The INT will indicate a point of time that the data of output register changes and MCU needs to read it. The interrupt function can operate in two optional modes with INT\_MODE bit and select the output polarity (High or Low) with INT\_OUT\_POL bit. The INT port can have an open drain NMOS or PMOS hence a pull-up or pull-down resistor must be required. Two optional interrupt mode operations are shown as below figure. In one mode (A), a short interrupt pulse is generated at every output register changing points. In the other mode (B), an interrupt pulse maintains high or low (depends on INT\_OUT\_POL) during at least one of eight channels' touch or tact switch input is coming on the output register.



#### 3-9 Initial Operation Values Changing (MTP ROM Programming)

In case of not using I<sup>2</sup>C application, the default value of registers could be changed by using MTP ROM contents. The MTP ROM allows rewriting the contents up to six times. The GT108M loads all contents from MTP ROM to corresponding with registers during reset period. For more detail information about memory programming and read condition, please refer to 2-5 section. For programming to MTP, typical 6.5V power is required through VPP port. The maximum tolerable maintain time with VPP power for MTP programming is about 6.5 second. In the application, the VPP port must be connected to either VDD or floating. The connection to GND for VPP is forbidden in any case.

#### **REGISTER DESCRIPTION**

#### **Chapter 4: Register Description**

#### 4-1 I<sup>2</sup>C Write/Read Operations in Normal Mode

The following figure represents the I<sup>2</sup>C normal mode write and read registers.

#### ☞ Write operation (Write the data AA and BB to register 0x00 and 0x01)

| Start | Device<br>Address 0xB8 | ACK | Register<br>Address 0x00 | ACK | Data AA | ACK | Data BB | ACK | Stop |
|-------|------------------------|-----|--------------------------|-----|---------|-----|---------|-----|------|
|-------|------------------------|-----|--------------------------|-----|---------|-----|---------|-----|------|

| 🖙 Re  | ad operat            | ion (F    | Read a    | data from            | regi         | ister 0x | 00 and 0x     | 01)      |             |                 |                 |                |
|-------|----------------------|-----------|-----------|----------------------|--------------|----------|---------------|----------|-------------|-----------------|-----------------|----------------|
| Start | Device<br>Address 0  | xB8       | АСК       | Registe<br>Address 0 | r<br>x00     | ACK      | Stop          |          |             |                 |                 |                |
| Start | Device<br>Address 0  | xB9       | ACK       | Data Rea<br>AA       | ad           | ACK      | Data Re<br>BB | ad       | ACKB        | Stop            |                 |                |
|       | From Master to Slave |           |           |                      |              |          | From SI       | ave to   | o Maste     | er              |                 |                |
| Addr. | Default              | мар<br>Ві | it7       | Bit6                 | E            | Bit5     | Bit4          | E        | Bit3        | Bit2            | Bit1            | Bit0           |
| 01H   | 0xFF                 |           |           |                      |              |          | TOUCH         | I_CH_    | EN          |                 |                 |                |
| 02H   | 0xB8                 |           |           |                      |              |          | CHIP_ID       |          |             |                 |                 | RESERVE        |
| 04H   | 0x51                 |           |           |                      | RES          | SERVE    |               |          |             | SINGLE_<br>MODE | RESI            | ERVE           |
| 05H   | 0x00                 |           |           |                      |              |          | PWM_          | CH_E     | N           |                 |                 |                |
| 06H   | 0x00                 |           |           |                      | TACT_CH_EN   |          |               |          |             |                 |                 |                |
| 2AH   | 0x                   |           |           |                      | TOUCH_OUTPUT |          |               |          |             |                 |                 |                |
| 38H   | 0x14                 | RESI      | ERVE      | SINGLE_<br>MODE      |              |          |               |          | RESE        | RVE             |                 |                |
| 39H   | 0xF1                 | SCL<br>E  | _PU_<br>N | SDA_PU_<br>EN        | IMF          | P_SEL    |               | SCL_(    | CLK_SEL     | -               | SYS_C           | LK_SEL         |
| 3AH   | 0x01                 | RESI      | ERVE      | IR_HOLD<br>_TIME     | IR           | R_EN     | INT_MOD<br>E  | INT<br>_ | _OUT<br>POL | INT_EN          | DIR_OUT<br>_POL | DIR_EN         |
| 3BH   | 0x00                 | LED<br>D  | _MO<br>)E | PWM_EN               | LDC          | D_POL    | LDO_EN        | SL       | EEP         | RESI            | ERVE            | SOFT_RE<br>SET |
| 3CH   | 0x09                 |           |           | RESERVE              |              |          | ACT_TI        | ME_C     | TRL         | SE              | NSING_PERI      | OD             |
| 3DH   | 0x16                 |           | RESE      | RVE                  |              |          | EXPIR         | E_TIN    | 1E          |                 | EXP_EN          | EXP_MO<br>DE   |
| 3EH   | 0x35                 | RESI      | ERVE      | NOI                  | SE_F         | ILTER_G  | AIN           |          | UP_S        | SET             | DOW             | N_SET          |
| 3FH   | 0x13                 | LDO.      | _SET      |                      |              |          |               | RES      | SERVE       |                 |                 |                |
| 42H   | 0x07                 |           | RESE      | RVE                  |              |          |               |          | SENSIT      | IVITY 1         |                 |                |
| 43H   | 0x07                 |           | RESE      | RVE                  |              |          |               |          | SENSIT      | IVITY 2         |                 |                |
| 44H   | 0x07                 |           | RESE      | RVE                  |              |          |               |          | SENSIT      | IVITY 3         |                 |                |
| 45H   | 0x07                 |           | RESE      | RVE                  |              |          |               |          | SENSIT      | IVITY 4         |                 |                |

GreenChip Inc. Confidential

GREENCHIP

GT108M

| Addr. | Default | Bit7    | Bit6 | Bit5               | Bit4 | Bit3   | Bit2    | Bit1   | Bit0 |  |
|-------|---------|---------|------|--------------------|------|--------|---------|--------|------|--|
| 46H   | 0x07    | RESERVE |      | SENSITIVITY 5      |      |        |         |        |      |  |
| 47H   | 0x07    | RES     | ERVE | SENSITIVITY 6      |      |        |         |        |      |  |
| 48H   | 0x07    | RES     | ERVE |                    |      | SENSIT | IVITY 7 |        |      |  |
| 49H   | 0x07    | RES     | ERVE |                    |      | SENSIT | IVITY 8 |        |      |  |
| 4AH   | 0x00    |         | PWM_ | DATA 2             |      |        | PWM_    | DATA 1 |      |  |
| 4BH   | 0x00    |         | PWM_ | DATA 4             |      |        | PWM_    | DATA 3 |      |  |
| 4CH   | 0x00    |         | PWM_ | _DATA 6 PWM_DATA 5 |      |        |         |        |      |  |
| 4DH   | 0x00    |         | PWM_ | DATA 8             |      |        | PWM_    | DATA 7 |      |  |

#### 4-3 Register Description

#### 4-2-1 Touch Channel Enable Registers - R/W

#### ☞ Description: The GT108M supports eight each touch channel enable register.

| 01H     | 1    | Bit7        | Bit6 | Bit5     | Bit4        | Bit3                          | Bit2 | Bit1 | Bit0 |  |  |
|---------|------|-------------|------|----------|-------------|-------------------------------|------|------|------|--|--|
| Name    |      | TOUCH_CH_EN |      |          |             |                               |      |      |      |  |  |
| Default |      | 1           | 1    | 1        | 1           | 1                             | 1    | 1    | 1    |  |  |
| Addr.   | Bits | Defaul      | t I  | Name     | Description |                               |      |      |      |  |  |
| 01H     | 7-0  | FFH         | TOUC | CH_CH_EN | 1~8 each to | 1~8 each touch channel enable |      |      |      |  |  |

#### 4-2-2 Chip ID Control Registers - R/W

#### ☞ *Description:* The GT108M chip ID

|         | -           |                |      |                |           |                     |             |   |   |  |  |
|---------|-------------|----------------|------|----------------|-----------|---------------------|-------------|---|---|--|--|
| 02H     | E           | Bit7           | Bit6 | Bit5           | Bit4      | Bit4 Bit3 Bit2 Bit1 |             |   |   |  |  |
| Name    |             |                |      |                | CHIP_ID   | CHIP_ID RESERV      |             |   |   |  |  |
| Default |             | 1              | 0    | 1              | 1         | 1                   | 0           | 0 | 0 |  |  |
|         |             |                |      |                |           |                     |             |   |   |  |  |
|         |             |                |      |                |           |                     |             |   |   |  |  |
| Addr.   | Bits        | Default        |      | Name           |           |                     | Description |   |   |  |  |
| Addr.   | Bits<br>7-1 | Default<br>5CH | C    | Name<br>HIP_ID | GT108M ch | ip ID               | Description |   |   |  |  |

#### 4-2-3 Single and Multi-touch Control Registers - R/W

#### ☞ Description: The GT108M single/multi-touch control

| 04H     | E                                                                                                | Bit7    | Bit6 | Bit5    | Bit4   | Bit3 | Bit2 Bit1 Bit0          |       |  |  |
|---------|--------------------------------------------------------------------------------------------------|---------|------|---------|--------|------|-------------------------|-------|--|--|
| Name    |                                                                                                  |         |      | RESERVE |        |      | SINGLE_M<br>ODE RESERVE |       |  |  |
| Default |                                                                                                  | 0       | 1    | 0       | 1      | 0    | 0                       | 0 0 1 |  |  |
| Addr    | Bits                                                                                             | Default |      | Name    |        |      | Description             |       |  |  |
| Addi    | Bito                                                                                             | Deruunt |      | tunic   |        |      | Description             |       |  |  |
|         | 7-3                                                                                              | 01010B  | RE   | SERVE   |        |      |                         |       |  |  |
| 04H     | 04H     2     0B     SINGLE_MODE     GT108M single/multi touch mode       0: single     1: multi |         |      |         | n mode |      |                         |       |  |  |
|         | 1-0                                                                                              | 01B     | RE   | SERVE   |        |      |                         |       |  |  |

#### 4-2-4 PWM Channel Enable Registers - R/W

Description: The GT108M supports eight each PWM output generation.

|         | · ·  |        |           |         |                             |             |      |      |      |  |  |
|---------|------|--------|-----------|---------|-----------------------------|-------------|------|------|------|--|--|
| 05H     | E    | Bit7   | Bit6      | Bit5    | Bit4                        | Bit3        | Bit2 | Bit1 | Bit0 |  |  |
| Name    |      |        | PWM_CH_EN |         |                             |             |      |      |      |  |  |
| Default |      | 0      | 0         | 0       | 0 0 0 0 0                   |             |      |      |      |  |  |
|         |      |        |           |         |                             |             |      |      |      |  |  |
| Addr.   | Bits | Defaul | t I       | Name    |                             | Description |      |      |      |  |  |
| 05H     | 7-0  | 00H    | PWN       | /_CH_EN | 1~8 each PWM channel enable |             |      |      |      |  |  |

#### 4-2-5 Tact Channel Enable Registers - R/W

☞ Description: The GT108M supports eight each T/S(Tact Switch) detection logic.

| 06H     | 1    | Bit7    | Bit6 | it6 Bit5 Bit4 Bit3 Bit2 Bit1 |                                                                          |   |             |   |   |  |  |  |
|---------|------|---------|------|------------------------------|--------------------------------------------------------------------------|---|-------------|---|---|--|--|--|
| Name    |      |         |      | TACT_CH_EN                   |                                                                          |   |             |   |   |  |  |  |
| Default |      | 0       | 0    | 0                            | 0                                                                        | 0 | 0           | 0 | 0 |  |  |  |
|         |      |         | _    |                              | -                                                                        |   |             |   |   |  |  |  |
| Addr.   | Bits | Default |      | Name                         |                                                                          |   | Description |   |   |  |  |  |
| 06H     | 7-0  | 00H     | TAC  | T_CH_EN                      | 1~8 each TACT detection enable<br>The opposite touch channel is disabled |   |             |   |   |  |  |  |

#### 4-2-6 Touch Output Registers - R

#### *Description:* An each touch channel status can be monitored.

| 2AH     | E    | Bit7         | Bit6 | Bit5     | Bit4       | Bit3                               | Bit2 | Bit1 | Bit0 |  |  |
|---------|------|--------------|------|----------|------------|------------------------------------|------|------|------|--|--|
| Name    |      | TOUCH_OUTPUT |      |          |            |                                    |      |      |      |  |  |
| Default |      | -            | -    | -        | -          | -                                  | -    | -    | -    |  |  |
| Addr.   | Bits | Defaul       | t I  | Name     |            | Description                        |      |      |      |  |  |
| 2AH     | 7-0  | H            | TOUC | H_OUTPUT | Touch chan | Touch channel detection monitoring |      |      |      |  |  |

#### 4-2-7 Single and Multi-touch Control Registers - R/W

#### *Description:* The GT108M single/multi-touch control

| 38H     | E    | Bit7   | Bit6            | Bit5  | Bit4 Bit3 Bit2 Bit1 |         |             |   | Bit0 |  |  |
|---------|------|--------|-----------------|-------|---------------------|---------|-------------|---|------|--|--|
| Name    | RES  | SERVE  | SINGLE_M<br>ODE |       |                     | RESERVE |             |   |      |  |  |
| Default |      | 0      | 0               | 0     | 1                   | 0       | 1           | 0 | 0    |  |  |
| Addr.   | Bits | Defaul | t l             | Name  |                     |         | Description |   |      |  |  |
|         | 7    | 0B     | RE              | SERVE |                     |         |             |   |      |  |  |

|     | 1   | UD UD   | RESERVE     |                                                           |
|-----|-----|---------|-------------|-----------------------------------------------------------|
| 38H | 6   | 0B      | SINGLE_MODE | GT108M single/multi touch mode<br>0 : single<br>1 : multi |
|     | 5-0 | 010100B | RESERVE     |                                                           |



#### 4-2-8 General1 Control Registers - R/W

☞ Description: The GT108M supports control registers for meeting various user applications.

| 39H     | E    | Bit7      | Bit6          | Bit5    | Bit4                                                                            | Bit3             | Bit2        | Bit1 | Bit0   |  |  |
|---------|------|-----------|---------------|---------|---------------------------------------------------------------------------------|------------------|-------------|------|--------|--|--|
| Name    | SCL  | PU_E<br>N | SDA_PU_E<br>N | IMP_SEL |                                                                                 | SCL_CLK_SEL      |             |      | LK_SEL |  |  |
| Default | :    | 1         | 1             | 1       | 1 0 0 0 1                                                                       |                  |             |      |        |  |  |
| Addr.   | Bits | Defaul    | t I           | Name    |                                                                                 |                  | Description |      |        |  |  |
|         | 7    | 1B        | SCL           | _PU_EN  | SCL pull-up                                                                     | enable           |             |      |        |  |  |
|         | 6    | 1B        | SDA           | _PU_EN  | SDA pull-up                                                                     | enable           |             |      |        |  |  |
|         | 5    | 1B        | IM            | IMP_SEL |                                                                                 | Impedance select |             |      |        |  |  |
| 39H     | 4-2  | 100B      | SCL_          | CLK_SEL | I <sup>2</sup> C clock se<br>000: 4MHz<br>100: 2.3MH<br>110: 1MHz<br>111: 0.5MH | elect<br>Iz<br>z |             |      |        |  |  |
|         | 1-0  | 01B       | SYS_          | CLK_SEL | System cloo<br>00: 70KHz<br>01:100KHz<br>11: 140KHz                             | ck select        |             |      |        |  |  |

#### 4-2-9 General2 Control Registers - R/W

☞ Description: The GT108M supports control registers for meeting various user applications.

| 3AH     | 1    | Bit7   | Bit6             | Bit5     | Bit4                                                                                                                              | Bit3                                                                         | Bit2        | Bit1            | Bit0   |  |  |
|---------|------|--------|------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------|-----------------|--------|--|--|
| Name    | RES  | SERVE  | IR_HOLD_<br>TIME | IR_EN    | INT_MODE                                                                                                                          | INT_OUT_<br>POL                                                              | INT_EN      | DIR_OUT_<br>POL | DIR_EN |  |  |
| Default |      | 0      | 0                | 0        | 0                                                                                                                                 | 0                                                                            | 0           | 0               | 1      |  |  |
| Addr.   | Bits | Defaul | t l              | Name     |                                                                                                                                   |                                                                              | Description |                 |        |  |  |
|         | 7    | 0B     | RE               | SERVE    |                                                                                                                                   |                                                                              |             |                 |        |  |  |
|         | 6    | 0B     | IR_H             | OLD_TIME | IR time select<br>0 : Touch operation restart after 160ms with IR finish<br>1 : Touch operation restart after 80ms with IR finish |                                                                              |             |                 |        |  |  |
|         | 5    | 0B     | I                | R_EN     | IR detection<br>0: IR detection<br>1: IR detection                                                                                | i enable<br>ion disable<br>ion enable                                        |             |                 |        |  |  |
|         | 4    | 0B     | INT              | INT_MODE |                                                                                                                                   | Interrupt operation mode<br>0 : toggle mode (touch on/off)<br>1 : level mode |             |                 |        |  |  |
| 3AH     | 3    | 0B     | INT_             | OUT_POL  | Interrupt pol<br>0: Low activ<br>1: High activ                                                                                    | larity select<br>e<br>ve                                                     |             |                 |        |  |  |
|         | 2    | 0B     | 11               | NT_EN    | Interrupt ena<br>0: Interrupt e<br>1: Interrupt e                                                                                 | able<br>disable<br>enable                                                    |             |                 |        |  |  |
|         | 0    | 0B     | DIR_             | OUT_POL  | Direct output<br>0: Low activ<br>1: High activ                                                                                    | it polarity<br>e<br>ve                                                       |             |                 |        |  |  |
|         | 1    | 1B     | D                | IR_EN    | Direct output<br>0: Direct out<br>1: Direct out                                                                                   | it enable<br>tput disable<br>tput enable                                     |             |                 |        |  |  |

#### 4-2-10 General3 Control Registers - R/W

Description: The GT108M supports control registers for meeting various user applications.

| 3BH     | E                                                        | Bit7       | Bit6   | Bit5                                                                                  | Bit4                                          | Bit3                 | Bit2                       | Bit1 | Bit0           |  |
|---------|----------------------------------------------------------|------------|--------|---------------------------------------------------------------------------------------|-----------------------------------------------|----------------------|----------------------------|------|----------------|--|
| Name    | LED                                                      | D_MOD<br>E | PWM_EN | LDO_POL                                                                               | LDO_EN                                        | SLEEP                | RESE                       | ERVE | SOFT_RE<br>SET |  |
| Default |                                                          | 0          | 0      | 0                                                                                     | 0                                             | 0                    | -                          | -    | 0              |  |
| Addr.   | Bits                                                     | Defaul     | t I    | Name                                                                                  |                                               |                      | Description                |      |                |  |
|         | 7 0B LED_MODE LED mode<br>0 : PWM opera<br>1 : PWM opera |            |        |                                                                                       |                                               |                      | if IR input<br>in IR input |      |                |  |
|         | 6                                                        | 0B         | P۷     | PWM_EN  1 : PWM operation disable in IR input PWM enable 0: PWM disable 1: PWM enable |                                               |                      |                            |      |                |  |
| 3BH     | 5                                                        | 0B         | LD     | O_ POL                                                                                | LDO polarity<br>0: Low activ<br>1: High activ | y select<br>re<br>ve |                            |      |                |  |
|         | 4                                                        | 0B         | L      | DO_EN                                                                                 | LDO enable<br>0: LDO disa<br>1: LDO ena       | ble<br>ble           |                            |      |                |  |
|         | 3                                                        | 0B         | SLEE   | EP_MODE                                                                               | Sleep Mode<br>0 : Sleep dis<br>1 : Sleep er   | sable<br>able        |                            |      |                |  |
|         | 2-1                                                      | B          | RE     | SERVE                                                                                 |                                               |                      |                            |      |                |  |
|         | 0                                                        | 0B         | SOF    | T_RESET                                                                               | Software re<br>0: Reset dis<br>1: Reset en    | set<br>able<br>able  |                            |      |                |  |

#### 4-2-11 General4 Control Registers - R/W

*Description:* The GT108M supports control registers for meeting various user applications.

| 3CH     | - I  | Bit7               | Bit6    | Bit5      | Bit4                                                                                                                        | Bit3                                                                                                                                                                                                                                                                                                                                  | Bit2        | Bit1           | Bit0 |  |
|---------|------|--------------------|---------|-----------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|------|--|
| Name    |      |                    | RESERVE |           | ACT_TIM                                                                                                                     | ACT_TIME_CTRL                                                                                                                                                                                                                                                                                                                         |             | SENSING_PERIOD |      |  |
| Default |      | 0                  | 0       | 0         | 0                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                     | 0           | 0              | 1    |  |
| Addr.   | Bits | Default            | 1       | Name      |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       | Description |                |      |  |
|         | 7-5  | B                  |         |           |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                       |             |                |      |  |
| ЗСН     | 4-3  | 01B                | ACT_1   | TIME_CTRL | Active time select<br>00: 0.8 sec<br>01: 1.0 sec<br>10: 1.2 sec<br>01: 1.5 sec                                              |                                                                                                                                                                                                                                                                                                                                       |             |                |      |  |
|         | 2-0  | 001B SENSING_PERIC |         | NG_PERIOD | Sensing per<br>000: 50ms(<br>001: 40ms(<br>010: 25ms(<br>011: 22ms(<br>100: 20ms(<br>101: 18ms(<br>111: 10ms(<br>111: 10ms( | Sensing period select<br>000: 50ms(@Normal Clock Operation)<br>001: 40ms(@Normal Clock Operation)<br>010: 25ms(@Normal Clock Operation)<br>011: 22ms(@Normal Clock Operation)<br>100: 20ms(@Normal Clock Operation)<br>101: 18ms(@Normal Clock Operation)<br>110: 15ms(@Normal Clock Operation)<br>111: 10ms(@Normal Clock Operation) |             |                |      |  |

#### 4-2-12 General5 Control Registers - R/W

Description: The GT108M supports control registers for meeting various user applications.

| 3DH     |      | Bit7              | Bit6 | Bit5                                     | Bit4 Bit3 Bit2                                                                                                                      |                                                |            | Bit1 | Bit0         |  |  |
|---------|------|-------------------|------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------|------|--------------|--|--|
| Name    |      | RESE              | RVE  |                                          | EXP_                                                                                                                                | EXP_TIME                                       |            |      | EXP_<br>MODE |  |  |
| Default |      | 0                 |      |                                          | 1                                                                                                                                   | 0                                              | 1          | 1    | 0            |  |  |
| Addr.   | Bits | Bits Default Name |      |                                          |                                                                                                                                     | Description                                    |            |      |              |  |  |
|         | 7-6  | B                 | RE   | SERVE                                    |                                                                                                                                     |                                                |            |      |              |  |  |
|         | 5-2  | 0101B EX          |      | P_TIME Time = min (EXP_TIME * 4 + 2 sec) |                                                                                                                                     |                                                | l + 2 sec) |      |              |  |  |
| 3DH     | 1    | 1B                | E>   | KP_ EN                                   | Touch expire<br>0: Disable<br>1: Enable                                                                                             | Touch expire enable<br>0: Disable<br>1: Enable |            |      |              |  |  |
|         | 0    | 0B                | EXF  | P_MODE                                   | Touch expire mode<br>0 : Expire count is not restarted in a touch state<br>1 : Expire count is restarted if a different touch occur |                                                |            |      |              |  |  |

#### 4-2-13 General6 Control Registers - R/W

#### ☞ Description: The GT108M supports control registers for meeting various user applications.

| 3EH     | Bit7    | Bit6              | Bit5 | Bit4 | Bit3 | Bit2 | Bit1     | Bit0 |
|---------|---------|-------------------|------|------|------|------|----------|------|
| Name    | RESERVE | NOISE_FILTER_GAIN |      |      | UP_  | SET  | DOWN_SET |      |
| Default | -       | 0                 | 1    | 1    | 0    | 1    | 0        | 1    |
|         |         |                   |      | 1    |      |      |          |      |

| Addr. | Bits | Default | Name              | Description                                                         |  |  |  |
|-------|------|---------|-------------------|---------------------------------------------------------------------|--|--|--|
|       | 7    | -B      | RESERVE           |                                                                     |  |  |  |
|       | 6-4  | 011B    | NOISE_FILTER_GAIN | Noise filer gain control<br>[000] minimum gain ~ [101] maximum gain |  |  |  |
| 3EH   | 3-2  | 01B     | UP_SET            | Calibration up count<br>00: 1<br>01: 2<br>10: 3<br>11: 4            |  |  |  |
|       | 1-0  | 01B     | DOWN_SET          | Calibration down count<br>00: 1<br>01: 2<br>10: 3<br>11: 4          |  |  |  |

#### 4-2-14 General7 Control Registers - R/W

*Description:* The GT108M supports control registers for meeting various user applications.

|         |      |            |         |       | -                         | -                     |           |      |      |  |  |
|---------|------|------------|---------|-------|---------------------------|-----------------------|-----------|------|------|--|--|
| 3FH     | E    | Bit7       | Bit6    | Bit5  | Bit4                      | Bit3                  | Bit2      | Bit1 | Bit0 |  |  |
| Name    | LDC  | D_SET      | RESERVE |       |                           |                       |           |      |      |  |  |
| Default |      | 0          | 0       | 0     | 1                         | 0                     | 0         | 1    | 1    |  |  |
|         |      |            |         |       |                           |                       |           |      |      |  |  |
| Addr.   | Bits | Default    |         | Name  |                           | Description           |           |      |      |  |  |
| 3FH     | 7    | 0B LDO_SET |         |       | LDO user s<br>Automatic c | et<br>lear with touch | detection |      |      |  |  |
|         | 6-0  | 0B F       |         | SERVE |                           |                       |           |      |      |  |  |

4-2-15 Sensitivity Control Registers - R/W

*Description:* The GT108M can be controlled independently for getting the optimal sensitivity on each channel.

| XXH          | E    | Bit7    | Bit6 | Bit5          | Bit4                        | Bit3                        | Bit2 Bit1 |     | Bit0 |  |  |  |
|--------------|------|---------|------|---------------|-----------------------------|-----------------------------|-----------|-----|------|--|--|--|
| Name         |      | RESE    | RVE  |               |                             | SENSITIVITY n               |           |     |      |  |  |  |
| Default      |      | 0       | 0    | 0             | 0                           | 0                           | 1         | 1 1 |      |  |  |  |
| Addr.        | Bits | Default | 1    | Name          | Description                 |                             |           |     |      |  |  |  |
| 421          | 7-6  | 00B     | RE   | SERVE         | RVE                         |                             |           |     |      |  |  |  |
| 4211         | 5-0  | 07H     | SENS | SITIVITY 1    | Channel 1 t                 | Channel 1 touch sensitivity |           |     |      |  |  |  |
| 421          | 7-6  | 00B     | RE   | SERVE         |                             |                             |           |     |      |  |  |  |
| 43П          | 5-0  | 07H     | SENS | SITIVITY 2    | Channel 2 t                 | Channel 2 touch sensitivity |           |     |      |  |  |  |
|              | 7-6  | 00B     | RE   | SERVE         |                             |                             |           |     |      |  |  |  |
| 440          | 5-0  | 07H SEN |      | SITIVITY 3    | Channel 3 touch sensitivity |                             |           |     |      |  |  |  |
| 454          | 7-6  | 00B     | RE   | SERVE         |                             |                             |           |     |      |  |  |  |
| 4511         | 5-0  | 07H     | SENS | SITIVITY 4    | Channel 4 t                 | ouch sensitivity            | 1         |     |      |  |  |  |
| 464          | 7-6  | 00B     | RE   | SERVE         |                             |                             |           |     |      |  |  |  |
| 4011         | 5-0  | 07H     | SENS | SENSITIVITY 5 |                             | Channel 5 touch sensitivity |           |     |      |  |  |  |
| 474          | 7-6  | 00B     | RE   | SERVE         |                             |                             |           |     |      |  |  |  |
| 4/11         | 5-0  | 07H     | SENS | SENSITIVITY 6 |                             | Channel 6 touch sensitivity |           |     |      |  |  |  |
| <b>10</b> LI | 7-6  | 00B     | RE   | RESERVE       |                             |                             |           |     |      |  |  |  |
| 4011         | 5-0  | 07H     | SENS | SENSITIVITY 7 |                             | Channel 7 touch sensitivity |           |     |      |  |  |  |
| 10H          | 7-6  | 00B     | RE   | SERVE         |                             |                             |           |     |      |  |  |  |
| 430          | 5-0  | 07H     | SENS | SENSITIVITY 8 |                             | Channel 8 touch sensitivity |           |     |      |  |  |  |

#### 4-2-16 PWM Control Registers - R/W

☞ *Description:* The GT108M supports each PWM period registers.

| ХХН                      | 1    | Bit7                                                                  | Bit6 | Bit5       | Bit4         | Bit3                | Bit2 | Bit1 | Bit0 |  |  |  |
|--------------------------|------|-----------------------------------------------------------------------|------|------------|--------------|---------------------|------|------|------|--|--|--|
| Name                     |      |                                                                       | PW   | Mm         |              | PWM n               |      |      |      |  |  |  |
| <b>Default</b> 0 0 0 0 0 |      |                                                                       |      | 0          | 0            | 0                   | 0    |      |      |  |  |  |
| Addr.                    | Bits | Default                                                               |      | Name       |              | Description         |      |      |      |  |  |  |
|                          | 7-4  | 4         0000B         PWM 2           0         0000B         PWM 1 |      | PWM 2      | PWM 2 outp   | PWM 2 output period |      |      |      |  |  |  |
| 4/4/1                    | 3-0  |                                                                       |      | PWM 1 outp | utput period |                     |      |      |      |  |  |  |
|                          | 7-4  | 0000B                                                                 | F    | PWM 4      |              | PWM 4 output period |      |      |      |  |  |  |
| 401                      | 3-0  | 0000B                                                                 | F    | PWM 3      |              | PWM 3 output period |      |      |      |  |  |  |
|                          | 7-4  | 0000B                                                                 | F    | PWM 6      |              | PWM 6 output period |      |      |      |  |  |  |
| 4CH                      | 3-0  | 0000B                                                                 | F    | PWM 5      |              | PWM 5 output period |      |      |      |  |  |  |
| 4DH                      | 7-4  | 0000B                                                                 | F    | PWM 8      |              | out period          |      |      |      |  |  |  |
|                          | 3-0  | 0000B                                                                 | F    | PWM 7      |              | out period          |      |      |      |  |  |  |

#### **Application Notes**

#### **Chapter 5: Application Notes**

#### 5-1 Circuit Examples for Various Applications



Application example circuit for 32QFN package



Application example circuit for 24UQFN package

#### **Application Notes**

#### GT108M



Application example circuit for 24QSOP package



#### **Application Notes**

#### Application Notes

Normally a touch sensing operation is ultimately impedance variation sensing. Hence a touch sensing system is recommended to be taken care of prevention of the external sensing disturbance. Although the GT108M has enough noise rejection algorithms and various protection circuits to prevent noise causing error touch detection or incapable sensing, it is better to take care in noisy applications such as home appliances. There are many measurable or invisible noisy in system that can affect the impedance sensing signal and distort that signal. The main principal design issues and required attentions are such as below.

5-2-1 Power Line

- The touch sensor power line is recommended to be split from the other power lines such as relay circuits or LED that can make pulsation noise on their power lines.
- The big inductance that might exist in long power connection line can cause power fluctuation by other noise sources.
- The lower frequency periodic power noise such as a few Hz ~ kHz has more baneful influence on sensitivity calibration.
- An extra regulator for touch sensor is desirable for prevention above power line noises.
- The V<sub>DD</sub> under shooting pulse less than internal reset voltage can cause system reset.
- The capacitor connected between V<sub>DD</sub> and GND is somehow obligation element for buffering above power line noises.

5-2-2 Sensing Input Line for Touch Detect <Note1>

- The sensing line for touch detection is desirable to be routed as short as possible and the width of routing path should be as narrow as possible.
- The sensing line for touch detection should be formed by bottom metal, in other words, an opposite metal of a touch PAD.
- The sensing line for touch detection is desirable to be routed as far as possible from impedance varying path such as LED drive current path.
- An unused sensing channel is desirable to be turned off by control register or the MTP ROM memory writing. (Recommendation)
- The series resistor value should be less than 1kΩ and the location of resister is better if it is closer to the SIN ports for better stable operation. (Refer to 3-2)

5-2-3 Sensing Input Line for Tact Input <Note2>

- No external pull-up resistor is needed, because the internal pull-up current can be substituted the external pull-up resistor.
- The tact switch must be connected to GND not to VDD. (refer to 3-3)

5-2-4 Special Purpose IN/OUT Ports <Note3>

- The I\_IR has an optional pull-up resistor inside of the chip. It can be controlled by resistor setting (or MTP ROM writing). When this port is not used, it can be floating by using this internal pull-up resistor.
- The I\_IR port is for the signal input that makes system to hold all sensing operation. (Refer to 3-6)
- The OLDO is an output only port. It also can have an active low or an active high output mode. Both output modes are all open drain type. So, the pull-up or the pull-down resistor is required for valid output.(Refer to 3-5)
- The OLDO is for the output signal that can control other external components to move into sleep or stand-by mode for saving current until occurring sensing detection.
- The RST port is for the abrupt reset input signal. The high pulse signal can make system reset. This port has also an internal pull-down resistor hence the RST port can be floating. (Refer to 3-1)

5-2-5 I<sup>2</sup>C Interface Applications <Note4>

- The SCL is I<sup>2</sup>C clock input port and SDA is I<sup>2</sup>C data input/output port. SCL and SDA have internal optional pull-up resistor. So, when I<sup>2</sup>C interface is not required, SCL and SDA ports can be floating. For high speed communication, SDA port needs small resistor connected to V<sub>DD</sub> to reduce pulse rising delay. (Refer to 3-8)
- INT is for the output signal that indicates changing of sensing output data. This port is output only port and also can have active low output mode and active high output mode. Both output modes are all open drain type. So, pull-up or pull-down resistor is required for valid output.(Refer to 3-8)

5-2-6 VPP Power Port <Note5>

• The typical voltage of VPP is 6.5 V that is provided through VPP port. The maximum tolerable maintain time with VPP power for writing MTP is 6.5 second. In the application, the VPP port must be connected to either VDD or floating. The connection to GND for VPP is forbidden in any case. (refer to 3-9)

5-2-7 1 to 1 Direct Output Applications <Note6>

The ports that are used for 1 to 1 direct output have an active low and high output mode. Both
output modes are all open drain type. Therefore a pull-up or a pull-down resistor is required for a
valid output. The OUTx port corresponds to SINx sense input respectively. (Refer to 3-7)

5-2-8 LED PWM Drive applications <Note7>

• The maximum 15mA LED drive current can be sunk by a single OUT port on typical temperature condition. The OUT ports which are used as LED PWM drive port cannot carry out the role of 1 to 1 direct out simultaneously. The 16 steps brightness control is possible. (Refer to 3-4)

#### **PACKAGE INFORMATION**

#### GT108M

#### **Chapter 6: Package information**

#### 6-1 Package Outside Drawings for GT108M-QN5



#### **PACKAGE INFORMATION**

#### GT108M

#### 6-2 Package Outside Drawings for GT108M-UQ4



#### **PACKAGE INFORMATION**

#### GT108M

#### 6-3 Package Outside Drawings for GT108M-QSO

