The Classic of Touch Solution!

GREENCHIP

GreenTouch2[™] GT208L Capacitive Touch Sensor

v1.1 SPECIFICATION

www.greenchip.co.kr

GREENCHIP

GENERAL

The GT208L is one of the new GreenTouch2[™] capacitive touch sensor series. Especially the GT208L can do capacitance sensing with 8 channels under above GreenTouch2[™] engine operation.

Thanks to this epochal GreenTouch2[™] engine, the applications will be more robust and problem free against EMC, EMI, H/W variations, voltage disturbance, temperature drift, humidity drift and so on. Especially, it doesn't make any issue against CS and EFT noise environments occurred in any touch applications.

The GT208L offers 8 LED drivers with 16 steps dimming controller. The OUT[1:8] ports can be used for PWM output for LED dimming control. It's very economical solution when the LED feedbacks are required because there is no additional material cost for LED control.

For the touch output result, the I^2C or 1 to 1 direct output interface can be used. I^2C interface might be useful when the MCU IO or connector resource is not enough in the application.

The GT208L can be applied under wide supply voltage range from 2.5 V to 5.0V. And it has CTRL pin to select sensitivity options by making CTRL pin connection to VDD, GND and OPEN. No other external components are required for selecting such options.

FEATURES

- 8 channels cap. Sensing input
- Embedded GreenTouch2[™] Engine - Analog compensation circuit
 - Embedded digital noise filter
 - Intelligent sensitivity calibration
 - Embedded CS, EFT enhancer core
- Two types of interface support
 - 1 to 1 direct interface mode
 - I²C interface mode
- Provide interrupt function
- LED driver (16 steps dimming control)
- Sensitivity control by CTRL pin connection
- Incredibly low power consumption
 Normal mode: 120uA (@3.3V)
 - Normal mode: 150uA (@5.0V)
- Wide supply voltage range: 2.5V to 5.0V single supply operation
- Package type
 24QFN(4x4), 24QSOP package
- RoHS complaints

BLOCK DIAGRAM

APPLICATIONS

- Portable Electronics Mobile phone, MP3, PMP, PDA, Navigation, Digital Camera, Video Camera and Etc.
- Multimedia Devices TV, DVD player, Blue ray player, Digital photo frame, Home theater system and Etc.
- Home Appliance Refrigerator, Air cleaner, Air conditioner, Washing machine, Micro wave oven and Etc.
- PC, OA and Others PC, LCD monitor, Fax, Copy machine, Door lock, Lighting controls, Remote control, Toys, Gaming devices and Etc.

ORDERING INFORMATION

Part No.	Package
GT208L-QN4	24QFN 4x4
GT208L-QSO	24QSOP

REVISION HISTORY

Version	Date	Revision Contents
v1.0	May 2011	Release version
V1.1	June 2011	Edit 3-7 CTRL Pin selection (CHIP ID) Edit Description of SEN_IDLE_TIME in 4-3-8 General3 Control Registers

Copyright © 2009 by GreenChip Inc. - All Rights RESERVE.

GreenChip owns all right, title and interest in the property and products described herein, unless otherwise indicated. No part of this document may be translated to another language or produced or transmitted in any form or by any information storage and retrieval system without written permission from GreenChip. GreenChip reserves the right to change products and specifications without written notice. Customers are advised to obtain the latest versions of any product specifications.

GREENCHIP MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OTHER THAN COMPLIANCE WITH THE APPLICABLE GREENCHIP SPECIFICATION SHEET FOR THE PRODUCT AT THE TIME OF DELIVERY. IN NO EVENT SHALL GREENCHIP BE LIABLE FOR ANY INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES AS A RESULT OF THE PRODUCT'S PERFORMANCE OR FAILURE TO MEET ANY ASPECT OF SUCH SPECIFICATION. GREENCHIP PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN LIFE SUPPORT APPLIANCES, DEVICES OR SYSTEMS WHERE A MALFUNCTION OF A GREENCHIP DEVICE COULD RESULT IN A PERSONAL INJURY OR LOSS OF LIFE. CUSTOMERS USING OR SELLING GREENCHIP DEVICES FOR USE IN SUCH APPLICATIONS DO SO AT THEIR OWN RISK AND AGREE TO FULLY INDEMNIFY GREENCHIP FOR ANY DAMAGES RESULTING FROM SUCH IMPROPER USE OR SALE.

Information contained herein is presented only as a guide for the applications of our products. GreenChip does not warrant this product to be free of claims of patent infringement by any third party and disclaims any warranty or indemnification against patent infringement. No responsibility is assumed by GreenChip for any patent infringement resulting from use of its products by themselves or in combination with any other products. No license is hereby granted by implication or otherwise under any patent or patent rights of GreenChip.

The GreenChip logo is a registered trademark of GreenChip.

www.greenchip.co.kr

Revised June 2011 v1.1
GreenChip Inc. Confidential

GENERAL	2
FEATURES	2
BLOCK DIAGRAM	2
APPLICATIONS	2
ORDERING INFORAMTION	2
REVISION HISTORY	3
Chapter 1: Pinout Information	
1-1 24 OFN Pinout	5
1-2 24 QSOP Pinout	6
	Ũ
Charter 2: Electrical Cracification	
Chapter 2: Electrical Specification	7
2-1 ADSOINTE MAXIMUM Ratings	/ 7
2-2 DC & Operating Characteristics	/
2-3 ESD & Laich-Up Characteristics	
2-4 TC Intenace Timing Charactenstics	9
Chapter 2: Eurotional Description	
2.1 Deset and Operation Modes	10
3-1 Reset and Operation of Sensing & Deference Inputs	10 11
	11
3.4.1 to 1 Direct Output Interfaces	اک 12
3.5 l ² C Interface	۱۲ ۲۵
3.6 Interrupt Output	13 14
3.7 CTPL Pin Selection	14 14
3-7 CTRE FIN Selection	14
Chanter 4: Register Description	
4-1 I2C Write and Read Operation	15
4-2 Register Man	16
4-3 Register Description	17
Chapter 5: Application Notes	
5-1 Application Circuit Example	21
5-2 Application Notes	22
Chapter 6: Package Information	
6-1 Package Outside Drawings for GT208L-QN4	24
6-2 Package Outside Drawings for GT208L-QSO	25

Chapter 1: Pinout Information

This section describes the lists and illustrates the GT208L of GreenTouch2[™] family ports as well as pinout configuration. The GT208L device is available in the following package

1-1 24 QFN Pinout (GT208L-QN4)

Port No.	Туре	Name	Description			
1	AI	SIN 4	Channel 4: Capacitance sensing input			
2	AI	SIN 5	Channel 5: Capacitance sensing input			
3	AI	SIN 6	Channel 6: Capacitance sensing input			
4	AI	SIN 7	Channel 7: Capacitance sensing input			
5	AI	SIN 8	Channel 8: Capacitance sensing input			
6	AI	RIN	Capacitance reference input			
7	DI	SCL	I ² C serial clock input			
8	DIO	SDA	I ² C serial data communication port			
9	GND	GND	Ground connection			
10	AO/DI	CTRL	Sensitivity control input			
11	DI	RST	Reset control port (High active)			
12	DO	OUT 1	1 to 1 Direct output port for SIN 1 / LED PWM drive output			
13	DO	OUT 2	1 to 1 Direct output port for SIN 2 / LED PWM drive output			
14	DO	OUT 3	1 to 1 Direct output port for SIN 3 / LED PWM drive output			
15	DO	OUT 4	1 to 1 Direct output port for SIN 4 / LED PWM drive output			
16	DO	OUT 5	1 to 1 Direct output port for SIN 5 / LED PWM drive output			
17	DO	OUT 6	1 to 1 Direct output port for SIN 6 / LED PWM drive output			
18	DO	OUT 7	1 to 1 Direct output port for SIN 7 / LED PWM drive output			
19	DO	OUT 8	1 to 1 Direct output port for SIN 8 / LED PWM drive output			
20	DO	INT	Interrupt output port			
21	PWR	VDD	Supply Voltage			
22	AI	SIN 1	Channel 1: Capacitance sensing input			
23	AI	SIN 2	Channel 2: Capacitance sensing input			
24	AI	SIN 3	Channel 3: Capacitance sensing input			

[Note] DI: Digital Input, DO: Digital Output, DIO: Digital Input and Output, AI: Analog Input, AO: Analog Output, PWR: POWER

Refer to Chapter 6: Package Information for package outer scale

1-2 24 QSOP Pinout (GT208L-QSO)

Port No.	Туре	Name	Description		
1	AI	SIN 1	Channel 1: Capacitance sensing input		
2	AI	SIN 2	Channel 2: Capacitance sensing input		
3	AI	SIN 3	Channel 3: Capacitance sensing input		
4	AI	SIN 4	Channel 4: Capacitance sensing input		
5	AI	SIN 5	Channel 5: Capacitance sensing input		
6	AI	SIN 6	Channel 6: Capacitance sensing input		
7	AI	SIN 7	Channel 7: Capacitance sensing input		
8	AI	SIN 8	Channel 8: Capacitance sensing input		
9	AI	RIN	Capacitance reference input		
10	DI	SCL	I ² C serial clock input		
11	DIO	SDA	I ² C serial data communication port		
12	GND	GND	Ground connection		
13	AO/DI	CTRL	Sensitivity control input		
14	DI	RST	Reset control port (High active)		
15	DO	OUT 1	1 to 1 Direct output port for SIN 1 / LED PWM drive output		
16	DO	OUT 2	1 to 1 Direct output port for SIN 2 / LED PWM drive output		
17	DO	OUT 3	1 to 1 Direct output port for SIN 3 / LED PWM drive output		
18	DO	OUT 4	1 to 1 Direct output port for SIN 4 / LED PWM drive output		
19	DO	OUT 5	1 to 1 Direct output port for SIN 5 / LED PWM drive output		
20	DO	OUT 6	1 to 1 Direct output port for SIN 6 / LED PWM drive output		
21	DO	OUT 7	1 to 1 Direct output port for SIN 7 / LED PWM drive output		
22	DO	OUT 8	1 to 1 Direct output port for SIN 8 / LED PWM drive output		
23	DO	INT	Interrupt output port		
24	PWR	VDD	Supply Voltage		

[Note] DI: Digital Input, DO: Digital Output, DIO: Digital Input and Output, AI: Analog Input, AO: Analog Output, PWR: POWER

Refer to Chapter 6: Package Information for package outer scale

Chapter 2: Electrical Specification

2-1 Absolute Maximum Ratings

Parameter	Symbol	Min	Мах	Units	Conditions
Maximum supply voltage	V_{DD_MAX}	-	8.0	V	
Supply voltage range ⁽¹⁾	$V_{DD_{RNG}}$	2.2	6.0	V	
Voltage on any input port	V _{IN_MAX}	-	V _{DD} +0.3	V	
Maximum current into any port	I _{MIO}	-100	100	mA	
Power dissipation	P _{MAX}	-	800	mW	
Storage temperature	T _{STG}	-65	150	°C	
Operating humidity	H _{OP}	5	95	%	8 hours
Operating temperature	T _{OPR}	-40	85	°C	
Junction temperature	TJ	-40	125	°C	

(1) This is the real valid power supply voltage range considering allowable supply tolerance. It cannot be used as target supply voltage range which is separately presented at below DC & Operating Characteristics.

2-2 DC & Operating Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Power supply and current consumption							
Target supply voltage	V _{DD}		2.5	3.3(5.0)	5.5	V	
		Slow clock operation ⁽³⁾	-	70	120		
Current Consumption (Normal stand-by)	I _{DD}	Normal clock operation ⁽³⁾	-	120	170	μA	
		Fast clock operation ⁽³⁾	-	160	210		
Internal reset voltage ⁽²⁾	$V_{DD_{RST}}$	T _A = 25℃	-	1.6	2.0	V	
Digital input/output							
Input high level voltage	V _{IH}		V _{DD} *0.7	-	V _{DD} +0.3	V	
Input low level voltage	V _{IL}		-0.3	-	V _{DD} *0.3	V	
Internal pull-up resistor (Ports : SCL, SDA)	R _{PU}	Pull-up resistor enable	-	30	-	kΩ	
Internal pull-down resistor (Port : RST)	R _{PD}		-	45	-	kΩ	
Output (LED PWM) drive							
Output sink current (LED drivable)	I _{SINK}	Active low output ⁽⁴⁾	-	-	10	mA	
Output source current	I _{SRC}	Active high output ⁽⁴⁾	-	-	4	mA	
Output impedance to GND	7	Active low output (Low level) ⁽⁴⁾	-	15	-	Ω	
(NMOS)	ZON	Active low output (High level) ⁽⁴⁾	-	30	-	MΩ	
Output impedance to VDD	7	Active high output (Low level) ⁽⁴⁾	-	30	-	MΩ	
(PMOS)	∠op	Active high output (High level) ⁽⁴⁾	-	30	-	Ω	
Output PWM duty steps (LED brightness steps)	N _{DUTY}	LED output	-	16	-	step	
Maximum PWM low duty (Maximum brightness)	D _{MAX(L)}	LED output	-	88	-	%	
Minimum PWM low duty (LED off)	D _{MIN(L)}	LED output	-	0	-	%	

(1) Test condition: V_{DD} = 3.3V, TA = 25 °C and normal operation mode (Unless otherwise noted)

(2) The GT208L has internal reset circuit, so external reset element or reset signal is not always necessary for power reset.

(3) The operation mode can be selected by option register setting. Refer to Chapter 4: Register Description.

These current consumption values are measured at normal sensing period (45msec) register setting condition. (4) All the outputs can be selected as open-drain NMOS structure (Active Low) or as open drain PMOS structure (Active High).

ELECTRICAL SPECIFICATION

GT208L

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Timing and operations						
Time for stable power reset	T _{RST}		-	100	-	msec
Sense detection expire time	T _{EXP}		-	20	-	sec
Minimum RST high pulse width for external reset	T _{P_ERST}	Active high reset	10	-	-	usec
Maximum I ² C communication speed	Fc	Maximum internal I ² C support CLK	-	400k	-	bps
SIN (RIN) & CTRL						
Minimum detectable input capacitance variation	$\Delta C_{S_{MIN}}$		0.1	-	-	pF
Max. SIN(RIN) input capacitance	C _{SIN_MAX} C _{RIN_MAX}		-	-	50	рF
Sensitivity selection steps	N _{SEN}		-	60	-	step
Sense internal series resistor	Rs		-	40	-	Ω
Max. sense external series resistor	R _{S_EX}		-	-	1	kΩ
Typical CTRL sink(source) current		Normal clock operation, V_{DD} = 3.3V	-	20	-	μA

2-3 ESD & Latch-Up Characteristics

2-3.1 ESD Characteristics

Mode	Polarity	Мах	Reference
H.B.M			VDD
	POSITIVE / NEGATIVE	Over 7500V	VSS
			P to P
M.M		500V	VDD
	POSITIVE / NEGATIVE		VSS
			P to P

2-3.2 Latch-Up Characteristics

Mode	Polarity	Мах	Test Step
I Test	POSITIVE	100mA	25m A
	NEGATIVE	-100mA	ZOIIIA
V supply over 3.3V	POSITIVE	~ 8.5V	-

2-4 I²C Interface Timing Characteristics

2-4.1 Timing Diagram for SCL, SDA

Symbol	Characteris	Min	Мах	Units	Conditions	
-	Otent engelitien entry times	100KHz mode	4.7	-	usec	Only relevant for repeated
I STA_S	Start condition setup time	400KHz mode	1.0	-	usec	START condition
T _{STA_H} Start c	Start condition hold time	100KHz mode	4.0	-	usec	After this period, the first
	Start condition hold time	400KHz mode	1.0	-	usec	clock pulse is generated
T Ctop condition	Stop condition actual time	100KHz mode	4.7	-	usec	
I STO_S	Stop condition setup time	400KHz mode	1.0	-	usec	
Т _{STO_H}	Stop condition hold time	100KHz mode	4.0	-	usec	
		400KHz mode	1.0	-	usec	

2-4.2 Timing Diagram for SCL, SDA In/Out

Symbol	Characteris	tic	Min	Мах	Unit	Conditions
Turn	Clock bigh time	100KHz mode	4000	-	ns	
I HIGH	Clock high line	400KHz mode	1000	-	ns	
Т	Clock low time	100KHz mode	4700	-	ns	
I LOW	CIUCK IOW LITTLE	400KHz mode	1300	-	ns	
Τ	Data Input sotup timo	100KHz mode	250	-	ns	
DAT_S	Data input setup time	400KHz mode	100	-	ns	-
т	Data input hold time	100KHz mode	0	3500	ns	
I DAT_H		400KHz mode	0	900	ns	-
т	Output valid from clock	100KHz mode	-	2 clk	ns	System clock
IAA		400KHz mode	-	2 clk	ns	System clock
т.	SDA and SCL rising time	100KHz mode	-	1000	ns	The range of Cb is from
IR	SDA and SCL fising time	400KHz mode	20+0.1Cb	300	ns	10pF to 400pF.
т.	SDA and SCL falling time	100KHz mode	-	300	ns	The range of Cb is from
I F	SDA and SGL failing time	400KHz mode	20+0.1Cb	300	ns	10pF to 400pF.

GreenChip Inc. Confidential

Function Description

Chapter 3: Functional Description

3-1 Reset and Operation Modes

The GT208L has both internal power reset and external reset functions. The internal reset operation is used for initial power reset and the external reset operation is done by RST pin. High pulse signal by RST pin is for an abrupt reset which is required for intensive system reset. The RST pin might be floating and no external reset components are required when the external reset is not in use. The internal power reset sequence is represented as below.

The internal V_{DELAY} voltage starts to rise when V_{DD} come up to V_{DD_RST} level. The internal reset pulse is maintained as low between t1 and t2. During this low pulse period, the internal power reset operation is finished. The external reset by RST pin is activated during high input pulse period. The intensive system reset can be easily obtained by this high pulse input to the RST pin. More than 10usec high pulse period is required for proper reset. Because RST pin has an internal pull-down resistor (typical value is $45k\Omega$), the RST pin might be floating.

The three clock operations could be selected by 'SYS_CLK_SEL' register bit. The internal system clock and frequency bands of sense signal should change according to this selection. The current consumption will then increase as system and sense clock increases. The system and sense clock frequency are about 30% faster in fast clock operation and about 30% slower in slow clock operation than normal clock operation. The typical current consumption curves on each operation mode of GT208L are represented in accordance with V_{DD} voltage as below.

Typical Current consumption curve of GT208L (under 45msec sensing period register setting condition)

Revised June 2011 v1.1	10 / 25	Product Specification
GreenChip Inc. Confidential		The Classic of Touch Solution!

3-2 Implementation of Sensing & Reference Inputs (SIN1~SIN8, RIN)

SIN inputs (SIN1~SIN8) and RIN input are used for touch detection of capacitance variation sensing. The SIN input pins are connected to touch sensing pad and catches capacitance variation caused by direct touch or approach. And RIN input for the reference capacitance is connected only to a capacitor to compensate capacitance difference between SIN inputs and RIN input. The GT208L compares each capacitance of SIN input and that of RIN input and determines touch detection of each channel when capacitance of each SIN input increases. So, for correct capacitance between SIN inputs and RIN input, approximately equal initial-steady state capacitance between SIN inputs and RIN input are recommended. User can compensate initial-steady state capacitance difference between SIN inputs and RIN inputs and RIN input by adding capacitor to RIN pin. Experimentally, proper C_{RIN} capacitor value is about the average value of SIN inputs capacitors.

The GT208L also has various intelligent sensing functions to determine valid touch from error or sensitivity problems caused by various environmental noise effects. These advanced sensing methods will help making faultless touch key systems under the worst conditions.

With sensitivity options by CTRL pin and $C_{SIN1~8}$ capacitors, there will be no difficulties to satisfy system's required sensitivity. The internal intelligent sensitivity adjustment algorithm removes sensitivity rolling caused by system noise, circuit deviation, and circumstantial drift. The GT208L has a special noise elimination filter for more powerful noise rejection and it will be very helpful for proper touch operation even if the system operates under deteriorative environment conditions.

Implementation circuit for SIN inputs and RIN input is shown in figure below. The GT208L SIN inputs have an internal series resistor for ESD protection. The additional external series resistors are profitable for prevention of abnormal actions caused by radiation noise or electrical surge pulse. In any case, if the additional external series resistor (R_{E_SIN}) of each SIN input is required, then it should be less than 1k Ω and the location of resister is recommended as closer to the SIN pins. For $C_{SIN1~8}$, C_{RIN} capacitor, less than 50pF capacitor can be used. Both R_{E_SIN} and $C_{SIN1~8}$ are not obligatory components.

The SIN input routing lines are desirable to be routed as short as possible and the width of routing lines should be as narrow as possible and should be placed on bottom metal. In other words, a touch PAD and other parts should be placed on different metal each other. The additional extension line pattern of RIN input on application PCB can help prevention of abnormal actions caused by radiation noise, but excessive long RIN input line can be a reason for failure of touch detect. The SIN inputs and RIN input lines are desirable to be routed as far as possible from impedance varying path such as LED drive current path. All touch sensing pads are recommended to be surrounded by GND pattern in order to reduce noise influence.

Implementations for SIN inputs and RIN input with external components and sensing pad.

Revised June 2011 v1.1	11 / 25	Product Specification
GreenChip Inc. Confidential		The Classic of Touch Solution!

Function Description

3-3 LED PWM Drive (OUT1~OUT8)

The LED PWM drive is available by using output pins from OUT1 to OUT8. There are 16 steps for the LED brightness and this can be controlled by PWM duty with PWM control register. (*For more detail information, please refer to chapter 4: Register Description.*) The maximum LED brightness is on 88% duty and the minimum is on 0% duty. The maximum sink current is 10mA on each pin under typical condition. OUT pins that are used for driving LED, can't be used for 1 to 1 direct touch sensing output simultaneously. The basic implementation for LED PWM drive is shown in figure below. The R_{O1~8} are LED current limiting resistors.

Implementations of output ports for LED PWM drive

3-4 1 to 1 Direct Output Interfaces (OUT1~OUT8)

The GT208L has two types of output data interface methods. The first method is 1 to 1 direct output using from the OUT1 to OUT8 pins which are corresponding to SIN1 to SIN8 respectively. (Output pins OUTx corresponds to sensing channel of SINx) The other one is I^2C interface using SCL and SDA pins. This two interface methods can be used simultaneously. These 1 to 1 direct output pins can operate in active low or active high mode. Its polarity of output can be changed with 'DIR_OUT_POL' register bit and all OUTx pins will have the same active polarity. The OUTx pins have open drain NMOS structure so therefore it needs pull-up resistors when the OUTx pins are used in active low mode. They also have open drain PMOS structure and they need pull-down resistors in active high mode. A couple of k Ω can be used for these pull-up or pull-down resistors. The implementations for both two active modes are shown in figures following.

Implementations of OUTx ports used as active low mode

Revised June 2011 v1.1	12 / 25	Product Specification
GreenChip Inc. Confidential		The Classic of Touch Solution!

Implementations of OUTx ports used as active high mode

3-5 I²C Interface (SCL, SDA)

The SCL and SDA pins are used for l^2C interface. The SCL is l^2C clock input pin and the SDA is l^2C data input/output pin. By this l^2C interface, internal register values of GT208L can be read and written. Output data also can be read from the address 0x2A of internal register. These pins have an internal pull-up resistor (typical 30k Ω) to prevent open gate leakage current in input mode. For high speed communication, the SDA pin needs additional external pull-up resistor which is connected to V_{DD} to reduce rising delay. The simple internal block diagram for SCL and SDA is shown below. The GT208L has an internal l^2C clock oscillator. The maximum data-rate is about 400Kbps. For a timing of l^2C interface, please refer to the section 2-4.

Internal I²C interface structure of GT208L

Function Description

3-6 Interrupt Output (INT)

The GT208L provides an interrupt (INT) function to reduce a communication load between MCU and GT208L. The INT will indicate a point of time that the output status registers at the address 0x2A changes and MCU needs to read it. The interrupt function can be used in two modes by setting 'INT_MODE' register bit. The INT pin has an open drain NMOS structure hence a couple of $k\Omega$ pull-up resistor must be required. Two interrupt mode operations are shown in the figure below. In the mode (A), a short interrupt pulse is generated every time the data at the output status register changes. In the other mode (B), an interrupt pulse maintains low during at least one of eight channels' touch is coming on the output status register.

Optional interrupt modes of high interrupt pulse polarity selection case

3-7 CTRL Pin Selection (Sensitivity, Single/Multi mode, CHIP_ID)

In the GT208L, three options are available by CTRL pin connection. Each option and its connections are shown in the table and figures below. A pulse generator is implemented for connection indication signal. This CTRL pulse signal starts at internal power reset time and finishes after a few operation period and options setting. For more detail sensitivity adjustment, C_{SIN} capacitors should be used. (please refer to chapter 3.2)

 Revised June 2011 v1.1
 14 / 25

 GreenChip Inc. Confidential
 14 / 25

Chapter 4: Register Description

4-1 I²C Write/Read Operations in Normal Mode

The following figure represents the I²C normal mode write and read registers.

☞ Write operation (Write the data AA and BB to register 0x00 and 0x01)

Start	Device Address 0xB8	ACK	Register Address 0x00	ACK	Data AA	ACK	Data BB	ACK	Stop
-------	------------------------	-----	--------------------------	-----	---------	-----	---------	-----	------

Read operation (Read a data from register 0x00 and 0x01)

Start	Device Address 0xB8	ACK	Register Address 0x00	ACK	Stop			
Start	Device Address 0xB9	ACK	Data Read AA	ACK	Data R BB	lead	ACKB	Stop
			Г					

From Master to Slave

From Slave to Master

4-2 Register Map

Addr.	Def.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2 Bit 1 Bit 0					
02H	0xB8		Rese	erved			CHIP_ID[3:1]		Reserved		
03H	0xFF				TOUCH	_CH_EN					
04H	0x55			Reserved			MULTI_ MODE	Rese	erved		
05H	0x00				PWM_0	CH_EN					
2AH	0x				TOUCH_	OUTPUT					
39H	0x01			Rese	erved			SYS_CI	_K_SEL		
3AH	0x05	Rese	erved	UCTRL_EN	INT_MODE	Rese	erved	DIR_OUT_ POL	Reserved		
3BH	0x20	Reserved	SEN_IDI	_E_TIME	PWM_EN		Reserved		SOFT_RST		
3DH	0x1A		Reserved			EXP_TIME EXP_EN MODE					
40H	0x0F	Rese	erved		SENSITIVITY 1						
41H	0x0F	Rese	rved			SENSIT	TIVITY 2				
42H	0x0F	Rese	erved			SENSIT	TIVITY 3				
43H	0x0F	Rese	erved			SENSIT	TVITY 4				
44H	0x0F	Rese	rved			SENSITIVITY 5					
45H	0x0F	Rese	rved			SENSITIVITY 6					
46H	0x0F	Rese	rved			SENSIT	IVITY 7				
47H	0x0F	Rese	erved			SENSIT	IVITY 8				
48H	0x00		PWM_	DATA2			PWM_	DATA1			
49H	0x00		PWM_	DATA4			PWM_	DATA3			
4AH	0x00		PWM_	DATA6		PWM_DATA5					
4BH	0x00		PWM_	DATA8		PWM_DATA7					
4FH	0x20	Rese	erved	MON_RST			Reserved				

4-3 Register Description

4-3-1 Chip ID Control Registers - R/W

rightarrow Description: The GT208L chip ID. It can be set 0xB0 ~ 0xBF. This register control should be available when the CTRL pin is connected to open or VDD. Chip ID be set at 0xB4 when CTRL pin is connected to GND. (See 3-7 CTRL Pin Selection)

02H	E	Bit7	Bit6	Bit5	Bit4	Bit4 Bit3 Bit2 Bit1			Bit0	
Name			Rese	erved		CHIP_ID[3:1]			Reserved	
Default		1	0	1	1 1 0 0				0	
A al al u	Dite	Default		laws a						
Addr.	BIts	Default	r	vame	Description					
	7-4	1011B	Re	eserved	Fixed '1011	= 0xBH				
02H	3-1	100B	CHI	P_ID[3:1]	GT208L chip ID.					
	0	0B	Re	eserved						

4-3-2 Touch Channel Enable Registers - R/W

☞ Description: The GT208L supports eight each touch channel enable register.

03H	E	Bit7	Bit6	Bit5	Bit4	Bit4 Bit3 Bit2 Bit1 Bit0					
Name		TOUCH_CH_EN									
Default		1	1	1	1 1 1 1 1						
Addr.	Bits	Defaul	t	Name	Description						
03H	7-0	FFH	TOUC	CH_CH_EN	1~8 each to	1~8 each touch channel enable					

4-3-3 Single and Multi-touch Control Registers - R/W

Description: The GT208L is supported single and multi touch mode. This register is available when UCTRL EN(3AH[5]) is set or the CTRL pin is connected to VDD or Open.

04H	I	Bit7	Bit6	Bit6 Bit5 Bit4 Bit3 Bit2 Bit1					
Name	Reserved						MULTI_ MODE	Rese	erved
Default		0	1	1 0 1 0 1 0					
Addr	Rite	Dofault		Name Description					
Auui.	Dits	Delauli		Name Description					
	7-3	01010E	Re	eserved					
04H	2	1B	MUL	TI_MODE	GT208L sin 0 : single 1 : multi	gle/multi touch	mode		
	1-0	01B	Re	eserved					

4-3-4 PWM Channel Enable Registers - R/W

Secription: The GT208L supports eight each PWM output generation.

05H	E	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name		PWM_CH_EN										
Default	:	0	0	0	0	0 0 0 0 0						
			1									
Addr.	Bits	Default		Name			Description					
05H	7-0	00H	PWI	/_CH_EN	1~8 each P 0: disable 1: enable	1~8 each PWM channel enable 0: disable 1: enable						

4-3-5 Touch Output Registers - R

Description: An each touch channel status can be monitored.

2AH	E	Bit7	Bit6	Bit5	Bit4 Bit3 Bit2 Bit1							
Name		TOUCH_OUTPUT										
Default		-	-	-	-							
Addr.	Bits	Defaul	t	Name	Description							
2AH	7-0	H	TOUC	H_OUTPUT	Touch chan	Touch channel detection monitoring						

Revised June 2011 v1.1

GreenChip Inc. Confidential

4-3-6 General1 Control Registers - R/W

Description: The GT208L supports control registers for meeting various user applications.

39H	E	Bit7	Bit6	Bit5	Bit4	Bit4 Bit3 Bit2 Bit1 Bit0					
Name				Rese	ved SYS_CLK_SEL						
Default		0	0	0	0 0 0 0		0	1			
Addr.	Bits	Default		Name		Description					
	7-2	2 000000B									
39H	1-0	01B	SYS_	_CLK_SEL	System cloo 00: 70KHz 01:100KHz 11: 140KHz	ck select					

4-3-7 General2 Control Registers - R/W

☞ Description: The GT208L supports control registers for meeting various user applications.

3AH	В	it7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name	Name		rved	UCTRL_ EN	INT_MODE	Reserved		DIR_OUT_ POL	Reserved		
Default		0 0 0			0	0	1	0	1		
Addr.	Bits	Defau	t N	lame		Description					
	7-6	00B	Re	served							
	5	0B	UC.	UCTRL_EN		The value of sensitivity control registers (40H ~ 47H) could be adopted when UCTRL_EN is set to 1. 0 : Disabled 1 : Enabled					
3AH	4	OВ		INT_MODE		eration mode ode (touch on/c de	off)				
	3-2	01B	Re	eserved							
	0	0 0B DIR_		Direct outpu DUT_POL 0: Low activ 1: High activ		ect output polarity .ow active ligh active					
	1	1B	Re	served							

4-3-8 General3 Control Registers - R/W

☞ Description: The GT208L supports control registers for meeting various user applications.

3BH		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2 Bit1		Bit0			
Name	me Reserved		SENSING_PERIOD		PWM_EN	Reserved SOFT.			SOFT_RE SET			
Default	nult 0 0 1 0 0		0	0	0	0						
Addr.	Bits	Bits Default Name				Description						
	7	0B	Re	eserved								
	6-5	01B	SEN_I	SEN_IDLE_TIME		Sensing idle time. 00: 20ms (@Normal Clock Operation) 01: 45ms (@Normal Clock Operation) 10: 50ms (@Normal Clock Operation) 11: 60ms (@Normal Clock Operation)						
3BH	4	0B	PV	PWM_EN		PWM enable 0: PWM disable 1: PWM enable						
	3-1	000B	Re	eserved								
	0	0B	SOF	T_RESET	GT208L will Edge opera 0: Reset dis 1: Reset en	GT208L will be initialized but the values of register are not Edge operation therefore the bit should be set 1 to 0. 0: Reset disable 1: Reset enable			ot changed.			

4-3-9 Expiration Control Registers - R/W

Description: The GT208L supports control registers for meeting various user applications.

3DH	I	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name	Reserved				EXP_TIME EXP_E						
Default		0 0 0			1	1	0	1	0		
Addr.	Bits	Bits Default Name				Description					
	7-5	000B	Re	eserved							
	4-2	110B	EX	EXP_TIME		Time = (EXP_TIME) x 16 period (approximate)					
3DH	1	1 1B EXP_1		(P_EN	Touch expir 0: Disable 1: Enable	Touch expire enable 0: Disable 1: Enable					
	0	0 0B EXP_MOE		P_MODE	Touch expir 0 : Expire c 1 : Expire c	e mode ount is not resta ount is restarted	arted in a touch d if a different to	state ouch occur			

4-3-10 Sensitivity Control Registers - R/W

☞ Description: The GT208L can be controlled independently for getting the optimal sensitivity on each channel.

XXH	E	Bit7	Bit6	Bit5		Bit4	Bit3	Bit2	Bit1	Bit0	
Name		Reserve	d			0	SENSIT	IVITY n		1	
Default		0	0	0		0	1	1	1	1	
Addr.	Bits	Default	1	lame				Description			
	7-6	00B	Re	served							
40H	5-0	0FH	SENS	SITIVITY 1	C L C 0	Channel 1 to JCTRL_EN CTRL pin co 0x02 : Highe 0x3F : Lowe	ouch sensitivity (3AH[5]) must b onnection. est Sensitivity est Sensitivity	be set '1'. Othe	rwise, Sensitivi	ity follows	
	7-6	00B	Re	served							
41H	5-0	0FH	SENS	SITIVITY 2	C C 0 0	Channel 2 to JCTRL_EN CTRL pin co 0x02 : Highe 0x3F : Lowe	ouch sensitivity (3AH[5]) must b onnection. est Sensitivity est Sensitivity	be set '1'. Othe	rwise, Sensitivi	ity follows	
	7-6	00B	Re	served							
42H	5-0	0FH	SENS	SITIVITY 3	C L C 0 0	Channel 3 to JCTRL_EN CTRL pin cc 0x02 : Highe 0x3F : Lowe	ouch sensitivity (3AH[5]) must to prinection. lest Sensitivity lest Sensitivity	be set '1'. Othe	rwise, Sensitivi	ity follows	
	7-6	00B	Reserved								
43H	5-0	0FH	SENS	SITIVITY 4	C L C 0 0	Channel 4 to JCTRL_EN CTRL pin cc Dx02 : Highe Dx3F : Lowe	ouch sensitivity (3AH[5]) must b onnection. est Sensitivity est Sensitivity	be set '1'. Othe	rwise, Sensitivi	ity follows	
	7-6	00B	Re	eserved							
44H	5-0	0FH	SENS	SITIVITY 5	C L C 0 0	Channel 5 to JCTRL_EN CTRL pin cc 0x02 : Highe 0x3F : Lowe	ouch sensitivity (3AH[5]) must to prinection. lest Sensitivity lest Sensitivity	be set '1'. Othe	rwise, Sensitivi	ity follows	
	7-6	00B	Re	eserved							
45H	5-0	0FH	SENS	SITIVITY 6	C L C 0 0	Channel 6 touch sensitivity UCTRL_EN(3AH[5]) must be set '1'. Otherwise, Sensitivity follows CTRL pin connection. 0x02 : Highest Sensitivity 0x3E : Lowest Sensitivity					
	7-6	00B	Re	served							
46H	5-0	0FH	SENS	SITIVITY 7	C	Channel 7 to JCTRL_EN	ouch sensitivity (3AH[5]) must b	be set '1'. Othe	rwise, Sensitivi	ity follows	
Revised	l June 2	2011 v1.1				19 / 25			Product S	pecification	

GT208L

				CTRL pin connection. 0x02 : Highest Sensitivity 0x3F : Lowest Sensitivity
	7-6	00B	Reserved	
47H	5-0	0FH	SENSITIVITY 8	Channel 8 touch sensitivity UCTRL_EN(3AH[5]) must be set '1'. Otherwise, Sensitivity follows CTRL pin connection. 0x02 : Highest Sensitivity 0x3F : Lowest Sensitivity

4-3-11 PWM Control Registers - R/W

☞ Description: The GT208L supports each PWM period registers.

XXH	E	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name			PW	Mm			PW	Mn			
Default		0	0	0	0	0	0	0	0		
Addr.	Bits	Default	: 1	Name		Description					
48H -	7-4	ОH	F	PWM 2		PWM2 duty rate output 0x0 : 0% Duty Cycle 0xF : 88% Duty Cycle					
	3-0	ОH	0H PWM 1 0x0 : 0xF :		PWM2 duty 0x0 : 0% Du 0xF : 88% D	rate output ity Cycle outy Cycle					
4011	7-4	ОH	F	WM 4	PWM2 duty 0x0 : 0% Du 0xF : 88% D	rate output ity Cycle outy Cycle					
4311	3-0	ОH	F	PWM 3		PWM2 duty rate output 0x0 : 0% Duty Cycle 0xF : 88% Duty Cycle					
	7-4	ОH	F	WM 6	PWM2 duty 0x0 : 0% Du 0xF : 88% D	rate output ity Cycle outy Cycle					
4AN	3-0	ОH	F	WM 5	PWM2 duty 0x0 : 0% Du 0xF : 88% D	rate output ity Cycle outy Cycle					
(5)	7-4	ОH	F	WM 8	PWM2 duty 0x0 : 0% Du 0xF : 88% D	rate output ity Cycle outy Cycle					
4DH	3-0	ОH	F	WM 7	PWM2 duty 0x0 : 0% Du 0xF : 88% D	rate output ity Cycle outy Cycle					

4-3-12 General4 Control Registers - R/W

Description: The GT208L supports control registers for meeting various user applications.

	•			••	o i					
4FH	E	Bit7	Bit6	Bit5	Bit4	Bit4 Bit3 Bit2 Bit1 E				
Name		MON		MON_RST						
Default		0	0 1 0 0 0		0	0	0			
Addr.	Bits	Default	1	Name		Description				
	7-6	00B	Re	eserved						
4FH	5	1B	MC	DN_RST	This bit is so Clear by so	et 1 immediatel ftware.	y after GT208L	is reset.		
	4-0	00000B	Re	eserved						

Chapter 5: Application Notes

5-1 Application Circuit Example

Application example circuit for 24QFN package

Application example circuit for 24QSOP package

Application Notes

5-2 Application Notes

Normally a touch sensing operation is ultimately impedance variation sensing. Hence a touch sensing system is recommended to be taken care of prevention of the external sensing disturbance. Although the GT208L has enough noise rejection algorithms and various protection circuits to prevent error touch detection caused by noise and incapable sensing, it is better to take care in noisy applications such as home appliances. There are many measurable or invisible noises in system that can affect the impedance sensing signal or distort that signal. The main principal design issues and required attentions are such as below.

5-2-1 Power Line

- The touch sensor power line is recommended to be split from the other power lines such as relay circuits or LED that can make pulsation noise on their power lines.
- The big inductance that might exist in long power connection line can cause power fluctuation by other noise sources.
- The lower frequency periodic power noise such as a few Hz ~ kHz has more baneful influence on sensitivity calibration.
- An extra regulator for touch sensor is desirable for prevention above power line noises.
- The V_{DD} under shooting pulse less than internal reset voltage (V_{DD RST}) can cause system reset.
- The capacitor connected between V_{DD} and GND is somehow obligation element for buffering above power line noises. This capacitor must be placed as near to IC as possible.

5-2-2 Sensing (Reference) Input Line for Touch Detect <Note1><Note2>

- The sensing lines for touch detection are desirable to be routed as short as possible and the width of routing path should be as narrow as possible.
- The sensing line for touch detection should be formed by bottom metal, in other words, an opposite metal of a touch PAD.
- The additional extension line pattern of RIN input on application PCB can help prevention of abnormal actions caused by radiation noise, but excessive long RIN input line can be a reason for failure of touch detect.
- SIN capacitor is useful for sensitivity reduction adjust. A bigger capacitor of SIN makes sensitivity
 of corresponding channel to be lower.
- RIN capacitor value is about average value of SIN inputs capacitors.
- The sensing line for touch detection is desirable to be routed as far as possible from impedance varying path such as LED drive current path.
- An unused sensing channel is desirable to be turned off by control register. (Recommendation)
- Additional external series resistors are profitable for prevention of abnormal actions caused by radiation noise or electrical surge pulse. The series resistor value should be less than 1kΩ and the location of resister is better as near as possible to the SIN ports for better stable operation. (Refer to 3-2)
- All touch sensing pads are recommended to be surrounded by GND pattern to reduce noise influence.

5-2-4 External Reset <Note3>

• The RST port is for the abrupt reset input signal. The high pulse signal can make system reset. This port has also an internal pull-down resistor hence the RST port can be floating. (Refer to 3-1)

5-2-5 I²C Interface Applications <Note4>

- The SCL is I²C clock input port and SDA is I²C data input/output port. SCL and SDA have internal optional pull-up resistor. So, when I²C interface is not required, SCL and SDA ports can be floating. For high speed communication, SDA port needs small pull-up resistor connected to V_{DD} to reduce pulse rising delay. (Refer to 3-5)
- INT is for the output signal that indicates changing of sensing output data. This port is output only port and has active low function. Because INT pin has open drain structure, pull-up resistor is required for valid output.(Refer to 3-6)

5-2-6 Sensitivity Selection <Note5>

Three optional sensitivities are available by CTRL pin connection. Open connection (e.g. N.C.) comes to normal sensitivity, VDD connection comes to low sensitivity, and GND connection comes to high sensitivity. This sensitivity selection is valid for all sensing channels. (Refer to 3-7)

5-2-7 1 to 1 Direct Output Applications <Note6>

• The ports that are used for 1 to 1 direct output have an active low and high output mode. Both output modes are all open drain type. Therefore a pull-up or a pull-down resistor is required for a valid output. The OUTx port corresponds to SINx sense input respectively. (Refer to 3-4)

5-2-8 LED PWM Drive applications <Note7>

• The maximum 10mA LED drive current can be sunk by a single OUT port on typical temperature condition. The OUT ports which are used as LED PWM drive ports cannot carry out the role of 1 to 1 direct out simultaneously. The 16 steps brightness control is possible. (Refer to 3-3)

PACKAGE INFORMATION

Chapter 6: Package information

6-1 Package Outside Drawings for GT208L-QN4

GT208L

PACKAGE INFORMATION

GT208L

6-2 Package Outside Drawings for GT208L-QSO

Revised June 2011 v1.1 GreenChip Inc. Confidential