The Classic of Touch Solution!

GREENCHIP

GreenTouch2[™] GT216L Capacitive Touch Sensor

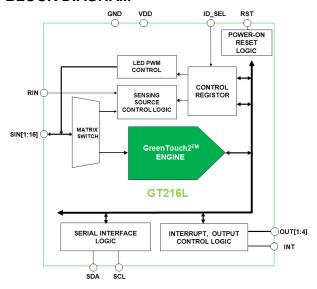
SPECIFICATION v1.0

GREENCHIP

GENERAL

The GT216L is one of the new GreenTouch2TM capacitive touch sensor series. Especially the GT216L can do capacitance sensing with 16 channels under above GreenTouch2TM engine operation.

Thanks to this epochal GreenTouch2TM engine, the applications will be more robust and problem free against EMC, EMI, H/W variations, voltage disturbance, temperature drift, humidity drift and so on. Especially, it doesn't make any issue against CS and EFT noise environments occurred in any touch applications.


The GT216L offers 16 touch sense inputs which also can be used as dimming LED drive output ports. It's very economical solution when the LED feedbacks are required because there is no additional material cost for LED control. Almost every option that controls touch operation and dimming LED driving of the GT216L can be performed by internal control registers. These internal control registers are readable and writable using I²C. Touch output result are also readable using. The I²C interface might be useful when the MCU IO or connector resource is not enough in the application.

The GT216L can be applied under wide supply voltage range from 2.5 V to 5.0V. The ID_SEL pin of the GT216L provides switchable chip ID that make two chip parallel operation on the same I²C bus. And 4 exclusive output pins of the GT216L provide 25mA sinkable outputs.

FEATURES

- 16 channels touch sensing inputs
 - These ports can be used as LED driver ports
- Embedded GreenTouch2[™] Engine
 - Analog compensation circuit
 - Embedded digital noise filter
 - Intelligent sensitivity calibration
 - Embedded CS, EFT enhancer core
- I²C interface supporting
- · Provide interrupt function
- LED driver (32 steps dimming control)
- · Four 25mA sinkable exclusive output ports
- · Incredibly low power consumption
 - Normal mode: 250uA (@3.3V)
 - SLEEP mode: under 5uA(@3.3V)
 - Available various op-periods for current saving
- Wide supply voltage range: 2.5V to 5.0V
 - Single supply operation
- Package type
 - 28 QFN 4x4 package
- RoHS compliant

BLOCK DIAGRAM

APPLICATIONS

- Multi key application Door lock, Remote controller and Etc.
- Portable Electronics Mobile phone, MP3, PMP, PDA, Navigation, Digital Camera, Video Camera and Etc.
- Multimedia Devices TV, DVD player, Blue ray player, Digital photo frame, Home theater system and Etc.
- Home Appliance Refrigerator, Air cleaner, Air conditioner, Washing machine, Micro wave oven and Etc.
- PC, OA and Others PC, LCD monitor, Fax, Copy machine, Lighting controls, Toys, Gaming devices and Etc.

ORDERING INFORMATION

Part No.	Package
GT216L-QN4	28 QFN 4x4

REVISION HISTORY

Version	Date	Revision Contents
v1.0	March 2012	First release

Copyright © 2009 by GreenChip Inc. - All Rights RESERVE.

GreenChip owns all right, title and interest in the property and products described herein, unless otherwise indicated. No part of this document may be translated to another language or produced or transmitted in any form or by any information storage and retrieval system without written permission from GreenChip.

GreenChip reserves the right to change products and specifications without written notice. Customers are advised to obtain the latest versions of any product specifications.

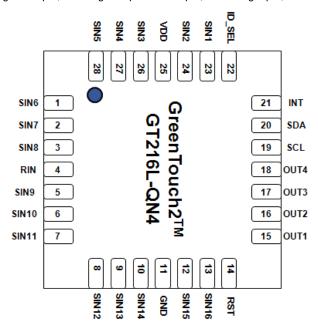
GREENCHIP MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OTHER THAN COMPLIANCE WITH THE APPLICABLE GREENCHIP SPECIFICATION SHEET FOR THE PRODUCT AT THE TIME OF DELIVERY. IN NO EVENT SHALL GREENCHIP BE LIABLE FOR ANY INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES AS A RESULT OF THE PRODUCT'S PERFORMANCE OR FAILURE TO MEET ANY ASPECT OF SUCH SPECIFICATION. GREENCHIP PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN LIFE SUPPORT APPLIANCES, DEVICES OR SYSTEMS WHERE A MALFUNCTION OF A GREENCHIP DEVICE COULD RESULT IN A PERSONAL INJURY OR LOSS OF LIFE. CUSTOMERS USING OR SELLING GREENCHIP DEVICES FOR USE IN SUCH APPLICATIONS DO SO AT THEIR OWN RISK AND AGREE TO FULLY INDEMNIFY GREENCHIP FOR ANY DAMAGES RESULTING FROM SUCH IMPROPER USE OR SALE.

Information contained herein is presented only as a guide for the applications of our products. GreenChip does not warrant this product to be free of claims of patent infringement by any third party and disclaims any warranty or indemnification against patent infringement. No responsibility is assumed by GreenChip for any patent infringement resulting from use of its products by themselves or in combination with any other products. No license is hereby granted by implication or otherwise under any patent or patent rights of GreenChip.

March 2012 v1.0 3 / 25 Product Preview

GREENCHIP

GENERAL	
FEATURES	
BLOCK DIAGRAM	
APPLICATIONS	
ORDERING INFORAMTION	
REVISION HISTORY	3
Chapter 1: Pinout Information	
1-1 28 QFN Pinout	. 5
Chapter 2: Electrical Specification	
2-1 Absolute Maximum Ratings	6
2-2 DC & Operating Characteristics	
2-3 ESD & Latch-Up Characteristics	7
2-4 I ² C Interface Timing Characteristics	. 8
Chapter 3: Functional Description	
3-1 Internal and External	
3-2 SLEEP mode and Sensing Period Options	-9
3-3 Implementation for SIN Ports	
3-4 Implementation for OUT [1:4]	
3-5 I ² C Interface	
3-6 Interrupt Output	13
Chapter 4: Register Description	
4-1 I ² C Write and Read Operation	14
4-2 Register Map	15
4-3 Register Description	1/
Chapter 5: Application Notes	
5-1 Application Circuit Example	23
5-2 Application Notes	23
Chapter 6: Package Information	
6-1 Package Outside Drawings for GT216L-QN4	25


Chapter 1: Pinout Information

This section describes the lists and illustrates the GT216L of GreenTouch2[™] family ports as well as pinout configuration. The GT216L device is available in the following package

1-1 28 QFN Pinout (GT216L-QN4)

Port No.	Туре	Name	Description
1	AI/DO	SIN 6	Channel 6: Touch sensing input / LED PWM drive output
2	AI/DO	SIN 7	Channel 7: Touch sensing input / LED PWM drive output
3	AI/DO	SIN 8	Channel 8: Touch sensing input / LED PWM drive output
4	Al	RIN	Capacitance reference input
5	AI/DO	SIN 9	Channel 9: Touch sensing input / LED PWM drive output
6	AI/DO	SIN 10	Channel 10: Touch sensing input / LED PWM drive output
7	AI/DO	SIN 11	Channel 11: Touch sensing input / LED PWM drive output
8	AI/DO	SIN 12	Channel 12: Touch sensing input / LED PWM drive output
9	AI/DO	SIN 13	Channel 13: Touch sensing input / LED PWM drive output
10	AI/DO	SIN 14	Channel 14: Touch sensing input / LED PWM drive output
11	GND	GND	Ground connection
12	AI/DO	SIN 15	Channel 15: Touch sensing input / LED PWM drive output
13	AI/DO	SIN 16	Channel 16: Touch sensing input / LED PWM drive output
14	DI	RST	Reset control port (Low active)
15	DO	OUT 1	Exclusive output (User controllable) / LED PWM drive output
16	DO	OUT 2	Exclusive output (User controllable) / LED PWM drive output
17	DO	OUT 3	Exclusive output (User controllable) / LED PWM drive output
18	DO	OUT 4	Exclusive output (User controllable) / LED PWM drive output
19	DI	SCL	I ² C serial clock input
20	DIO	SDA	I ² C serial data communication port
21	DO	INT	Interrupt output port
22	DI	ID_SEL	Option chip ID selection (Connected to VDD or GND)
23	AI/DO	SIN 1	Channel 1: Touch sensing input / LED PWM drive output
24	AI/DO	SIN 2	Channel 2: Touch sensing input / LED PWM drive output
25	PWR	VDD	Supply Voltage
26	AI/DO	SIN 3	Channel 3: Touch sensing input / LED PWM drive output
27	AI/DO	SIN 4	Channel 4: Touch sensing input / LED PWM drive output
28	AI/DO	SIN 5	Channel 5: Touch sensing input / LED PWM drive output

[Note] DI: Digital Input, DO: Digital Output, DIO: Digital Input and Output, AI: Analog Input, AO: Analog Output, PWR: POWER

Refer to Chapter 6: Package Information for package outer scale

March 2012 v1.0 5 / 25 Product Preview

Chapter 2: Electrical Specification

2-1 Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Units	Conditions
Maximum supply voltage	V_{DD_MAX}	-	8.0	V	
Supply voltage range ⁽¹⁾	V_{DD_RNG}	2.2	6.0	V	
Voltage on any input port	V _{IN_MAX}	-	V _{DD} +0.3	V	
Maximum current into any port	I _{MIO}	-100	100	mA	
Power dissipation	P _{MAX}	-	800	mW	
Storage temperature	T _{STG}	-65	150	°C	
Operating humidity	H _{OP}	5	95	%	8 hours
Operating temperature	T _{OPR}	-40	85	°C	
Junction temperature	T_J	-40	125	°C	

⁽¹⁾ This is the real valid power supply voltage range considering allowable supply tolerance. It cannot be used as target supply voltage range which is separately presented at below DC & Operating Characteristics.

2-2 DC & Operating Characteristics

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power supply and curren	nt consum	ption				
Target supply voltage	V_{DD}		2.5	3.3(5.0)	5.5	V
Current Consumption	I _{DD}	Normal operation	-	250	350	μA
(Normal stand-by)	טטי	Sleep mode	-	-	5	,
Internal reset voltage ⁽²⁾	V_{DD_RST}	T _A = 25°C	-	1.6	2.0	V
Digital input/output						
Input high level voltage (Ports : SCL, RST, ID_SEL)	V_{IH}		V _{DD} *0.7	-	V _{DD} +0.3	V
Input low level voltage (Ports : SCL, RST, ID_SEL)	V _{IL}		-0.3	-	V _{DD} *0.3	V
Internal pull-up resistor (Ports : SCL, SDA, RST)	R _{PU}	Pull-up resistor enable	-	30	-	kΩ
Output (LED PWM) drive)					
SIN[1:16] sink current	I _{S_SINK}	Active low output	-	-	10	mA
OUT[1:4] sink current	I _{O_SINK}	Active low output mode ⁽³⁾		-	25	mA
OUT[1:4] source current	I _{O_SRC}	Active high output mode ⁽³⁾		-	15	mA
Output PWM duty steps (LED brightness steps)	N _{DUTY}	Both SIN[1:16] and OUT[1:4]	-	32	-	step
Output impedance to GND	Z _{ON}	On mode	-	15	-	Ω
(NMOS)	ZON	Off mode	-	30	-	ΜΩ
Output impedance to VDD	Z _{OP}	Off mode	-	30	-	ΜΩ
(PMOS)	∠ OP	On mode	-	30	-	Ω
Maximum PWM low duty (Maximum brightness)	D _{MAX(L)}	LED output	-	100	-	%
Minimum PWM low duty (LED off)	$D_{MIN(L)}$	LED output	-	0	-	%

⁽¹⁾ Test condition: $V_{DD} = 3.3V$, TA = 25 $^{\circ}$ C and normal operation mode under default control register value. (Unless otherwise noted)

March 2012 v1.0 6 / 25 Product Preview

⁽²⁾ The GT216L has internal reset circuit, so external reset element or reset signal is not always necessary for power reset.

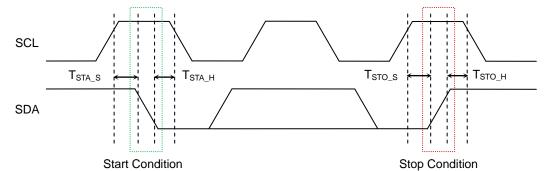
⁽³⁾ OUT[1:4] ports can be selected as open-drain NMOS structure (Active Low) or as open drain PMOS structure (Active High).

Parameter Symbol		Conditions	Min.	Тур.	Max.	Unit
Timing and operations						
Time for stable power reset	T _{RST}		-	100	-	msec
Sense detection expire time	T _{EXP}		-	30	-	sec
Minimum RST high pulse width for external reset	T_{P_ERST}	Active low reset	10	-	-	usec
Maximum I ² C communication speed	Fc	Maximum internal I ² C support CLK	-	400k	-	bps
Start time for I ² C communication after reset (ID_SEL = GND, VDD)	T _{ID_SEL_I2C}		1			msec
Touch Sensing (SIN, RIN	I)					
Minimum detectable input capacitance variation	ΔC _{S_MIN}		0.1	-	-	pF
Max. SIN(RIN) input	C _{SIN_MAX}				50	pΓ
capacitance	C _{RIN_MAX}		-	-	50	pF
Sensitivity selection steps	N _{SEN}		-	60	-	step
Sense internal series resistor	Rs		-	140	-	Ω
Max. sense external series resistor	R _{S_EX}		-	-	1	kΩ

2-3 ESD & Latch-Up Characteristics

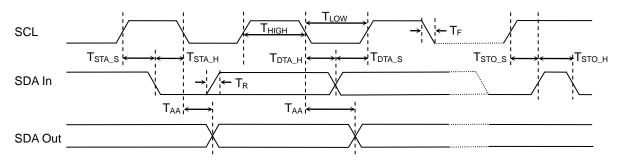
2-3.1 ESD Characteristics

Mode	Polarity	Max	Reference
		0 00001/	VDD
H.B.M	POSITIVE / NEGATIVE	Over 8000V (Class 3B)	VSS
		(01033 3D)	P to P
M.M		725V (Class C)	VDD
	POSITIVE / NEGATIVE	600V (Class C)	VSS
		475V (Class C)	P to P


2-3.2 Latch-Up Characteristics

Mode	Polarity	Condition	Result		
l Test	POSITIVE	100mA			
	NEGATIVE	-100mA	Pass		
V supply	POSITIVE	8.25V			

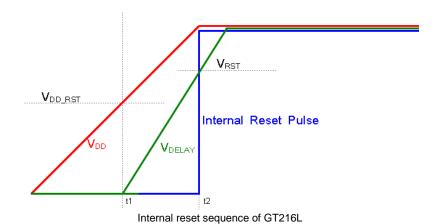
March 2012 v1.0 7 / 25 Product Preview


2-4 I²C Interface Timing Characteristics

2-4.1 Timing Diagram for SCL, SDA

Symbol	Characteris	tic	Min	Max	Units	Conditions
_	Start condition setup time	100KHz mode	4.7	-	usec	Only relevant for repeated
T _{STA_S}	Start condition setup time	400KHz mode	1.0	-	usec	START condition
_	Chart again dision had dision a	100KHz mode	4.0	-	usec	After this period, the first
T _{STA_H}	Start condition hold time	400KHz mode	1.0	-	usec	clock pulse is generated
_	Ctop condition actual time	100KHz mode	4.7	-	usec	
T _{STO_S}	Stop condition setup time	400KHz mode	1.0	-	usec	
T _{STO_H}	Stop condition hold time	100KHz mode	4.0	-	usec	
		400KHz mode	1.0	-	usec	

2-4.2 Timing Diagram for SCL, SDA In/Out


Symbol	Characteris	tic	Min	Max	Unit	Conditions
Т	Clock high time	100KHz mode	4000	-	ns	
T _{HIGH}	Clock nigh time	400KHz mode	1000	-	ns	
т	Clock low time	100KHz mode	4700	-	ns	
T_{LOW}	Clock low time	400KHz mode	1300	-	ns	
т	Data Input setup time	100KHz mode	250	-	ns	
T _{DAT_S}	S Data input setup time	400KHz mode	100	-	ns	-
T	Data input hold time	100KHz mode	0	3500	ns	
T _{DAT_H}	Data input noid time	400KHz mode	0	900	ns	-
т	Output valid from clock	100KHz mode	-	2 clk	ns	System clock
T_AA	Output valid from clock	400KHz mode	-	2 clk	ns	System clock
_	CDA and CCL riging time	100KHz mode	-	1000	ns	The range of Cb is from
T _R	SDA and SCL rising time	400KHz mode	20+0.1Cb	300	ns	10pF to 400pF.
Т-	SDA and SCI falling time	100KHz mode	-	300	ns	The range of Cb is from
T _F	SDA and SCL falling time	400KHz mode	20+0.1Cb	300	ns	10pF to 400pF.

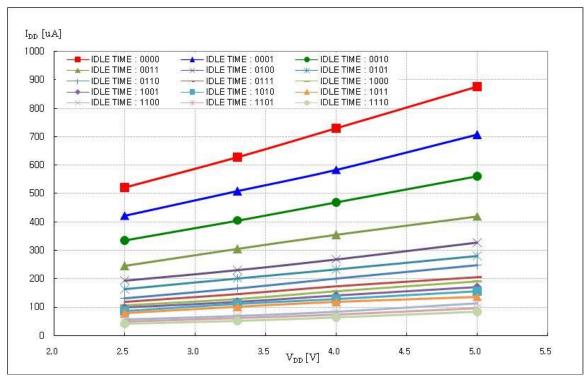
March 2012 v1.0 8 / 25 Product Preview

Chapter 3: Functional Description

3-1 Internal and External Reset

The GT216L has both internal power reset and external reset functions. The internal reset operation is used for initial power reset and the external reset operation is done by RST pin. Low pulse signal by RST pin is for an abrupt reset which is required for intensive system reset. The RST pin might be floating and no external reset components are required when the external reset is not in use. The internal power reset sequence is represented as below.

The internal V_{DELAY} voltage starts to rise when V_{DD} come up to V_{DD_RST} level. The internal reset pulse is maintained as low between t1 and t2. During this low pulse period, the internal power reset operation is finished. Every time when V_{DD} drops under V_{DD_RST} internal reset block makes V_{DELAY} signal low and then internal reset pulse drops to low. By above internal reset operation sequence GT216L gets more certain and more correct power reset function than any others.


The external reset using RST pin is activated during low input pulse. The intensive system reset can be easily obtained by this low pulse input to the RST pin. More than 10usec low pulse period is required for proper reset. Because RST pin has an internal pull-up resistor (typical value is $30k\Omega$), the RST pin might be floating.

3-2 SLEEP mode and Sensing Period Options (Current Consumption)

The GT216L has various consumption current saving operations. In the SLEEP mode, all of the internal system clock of GT216L are stopped and no current are consumed except basic biasing current of reset block (under 5uA)and no internal functions are available but I²C blocks are still available for restoring. Therefore in mobile application that uses battery for system's power supply, this SLEEP mode is useful to prolong the using time of battery during no action and stand-by time term. The SLEEP mode setting or restoring can be controlled by control register setting via I²C. (*For more detail information, please refer to chapter 4: Register Description.*)

Another current consumption saving strategy of GT216L is preparing various touch sensing period options. GT216L consumes lower current and touch detection needs somehow longer time at slow sensing period option than at fast sensing period option. That is the relation between current consumption and touch detection speed are complementary. These touch sensing period options can be selected according to application systems needs such as current consumption and touch detection speed by control register setting via I²C. (*For more detail information, please refer to chapter 4: Register Description.*) Current consumption curves of each supply voltage condition and each sensing period option are such as below.

March 2012 v1.0 9 / 25 Product Preview

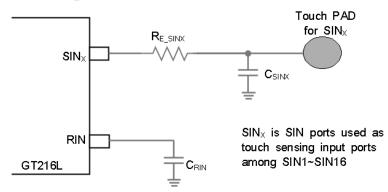
Typical current consumption curve of GT216L

3-3 Implementation for SIN Ports (SIN1~SIN16)

SIN ports (SIN1~SIN16) of GT216L have 2 main functions, the one is touch sensing input and the other is LED PWM drive output. Above two functions cannot be used simultaneously, that is some or all of SIN ports used as touch sensing input cannot be used as LED PWM drive port and some or all of SIN ports used as LED PWM drive port also cannot be used as touch sensing input. SIN using selection can be accomplished by internal register setting. (For more detail information, please refer to chapter 4: Register Description.)

■ Touch Sensing Input Implementation (SIN, RIN)

SIN ports can be used for touch sensing inputs for detection of capacitance variation sensing. The SIN input pins are connected to touch sensing pad and catches capacitance variation caused by direct touch or approaching. And RIN which is input port for the reference capacitance is to be connected to a capacitor to compensate capacitance difference between SIN ports and RIN port. The GT216L compares each capacitance of SIN ports and that of RIN port and determines touch detection of each channel when that channels' SIN port capacitance increases. So, for correct capacitance comparison between SIN ports and RIN port, the total RIN port capacitance is to be compensated to be approximately equal to initial-steady state capacitance of SIN ports appeared by connection line between SIN ports and touch pad and appeared by touch pad etc.. User can compensate initial-steady state capacitance difference between SIN inputs and RIN input by adding capacitor (C_{RIN}) to RIN pin. Experimentally, proper C_{RIN} capacitor value is about the average of total capacitance of each SIN ports.

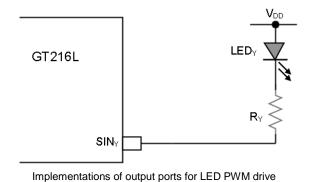

The GT216L also has additional intelligent touch detection algorithms to distinguish valid touch from error or sensitivity problems caused by various environmental noise effects. These advanced sensing algorithms will help making faultless touch key systems under the worst application conditions.

With sensitivity options by control register setting via I²C, there is almost no difficulty to satisfy system's required sensitivity. The internal automatic sensitivity adjustment algorithm removes sensitivity rolling caused by system noise, circuit deviation, and circumstantial drift. The GT216L has a

March 2012 v1.0 Product Preview

special noise elimination filter for more powerful noise rejection and it will be very helpful for proper touch operation even if the system operates under deteriorative environment conditions.

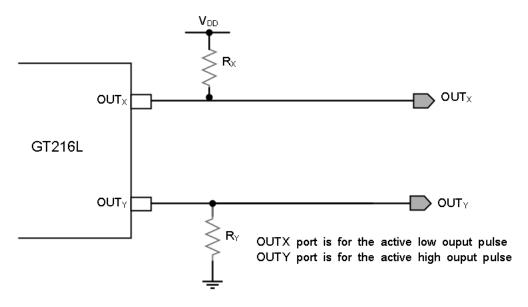
Implementation circuit for SIN ports and RIN port is shown in figure below. The GT216L SIN inputs have an internal series resistor for ESD protection. The additional external series resistors are profitable for prevention of abnormal actions caused by radiation noise or electrical surge pulse. In any case, if the additional external series resistor (R_{E_SINX}) of each SIN port is required, then it should be less than $1k\Omega$ and the location of resister is recommended as closer to the SIN pins of GT216L. The capacitors connected to touch pads are optional and it helps fine sensitivity control and capacitance compensation between each channels. For C_{SINX} , C_{RIN} capacitor, less than 50pF capacitor can be used. Both R_{E_SIN} and C_{SIN1-8} are not obligatory components.



Implementations for SIN inputs and RIN input with external components and sensing pad.

The connection line between SIN ports and touch pad routings are desirable to be routed as short as possible and the width of routing lines should be as narrow as possible and placed on opposite metal side. In other words, touch pad and touch pad connection lines should be placed on opposite metal side of PCB. The additional extension line pattern of RIN input on application PCB can help prevention of abnormal actions caused by radiation noise, but excessive long RIN input line can be a reason for failure of touch detect. The SIN inputs and RIN input lines are desirable to be routed as far as possible from impedance varying path such as LED drive lines. All touch sensing pads are recommended to be surrounded by GND pattern in order to reduce noise influence.

■ LED PWM Drive Implementation (SIN)


The LED PWM drive using SIN ports is available. There are 32 LED brightness control steps using PWM duty. These brightness steps can be controlled by internal control register via I²C. (*For more detail information, please refer to chapter 4: Register Description.*) The maximum LED brightness has 100% on duty and the minimum has 0% on duty. Each SIN port has NMOS drive transistor and the maximum sink current is 10mA on under typical condition. Therefore if some more drive current needs it is necessary to use OUT[1:4] ports rather than SIN[1:16]. The basic implementation for LED PWM drive is shown in figure below. The R_{SINX} are LED current limiting resistors.

March 2012 v1.0 Product Preview

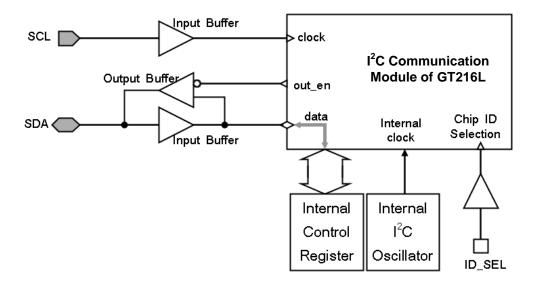
3-4 Implementation for OUT[1:4]

The GT216L has exclusive output ports OUT [1:4]. Output pulse polarity of each OUT ports can be changed independent on other OUT ports by internal control register setting via I²C. (*For more detail information, please refer to chapter 4: Register Description.*) When output pulse is set to have active low, NMOS output transistor makes output pulse and it needs external pull-up components. On the contrary, when output pulse is set to have active high, PMOS output transistor makes output pulse so external pull-down components are needed. For basic output pulse is fixed frequency PWM of which on duty can be easily changed from 0% to 100% by internal control register setting via I²C (*For more detail information, please refer to chapter 4: Register Description.*) OUT [1:4] ports are usefulness for high brightness LED drive. Each OUT [1:4] ports has sinking current ability typical 25mA and sourcing current ability typical 15mA. The basic implementations for both two active modes are shown in figures following.

Implementations of OUT[1:4] ports

3-5 I²C Interface (SCL, SDA, ID SEL)

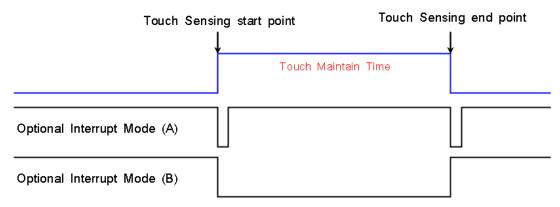
The SCL and SDA pins are used for I^2C interface. The SCL is I^2C clock input pin and the SDA is I^2C data input/output pin. By this I^2C interface, internal control register setting values of GT216L can be read and written. Output data also can be read from the address 0x02H and 0x03H of internal register. These pins have an internal pull-up resistor (typical $30k\Omega$) to prevent open gate leakage current in input mode. For high speed communication, the SCL and SDA pin needs additional external pull-up resistor which is connected to V_{DD} to reduce rising delay. The GT216L has an internal I^2C clock oscillator. The maximum data-rate is about 400Kbps. For a timing of I^2C interface, please refer to the section 2-4 i^2C Interface Timing Characteristics.


 I^2C chip ID of GT216L can be selected by ID_SEL connection. Two connections are available, one is to be connected to GND and the other is to be connected to V_{DD} . This pin is not permitted to be opened to prevent open gate leakage current. ID_SEL pin makes it possible that two chip parallel I^2C interface free from communication error use same I^2C bus.

The simple internal block diagram for SCL and SDA is shown below.

March 2012 v1.0 12 / 25 Product Preview

-	Device ID							
	1	0	1	1	0	0	ID_SEL	R/W


- * DEVICE ID: 0xB0 when ID_SEL is connected with GND.
- * DEVICE ID: 0xB2 when ID SEL is connected with VDD.

Internal I2C interface structure of GT216L

3-6 Interrupt Output (INT)

The GT216L provides an interrupt (INT) function to reduce a communication load between MCU and GT216L. The INT will indicate a point of time that the touch detection data status registers at the address 0x02H or 0x03H changes and MCU needs to read it. The interrupt function can be used in two modes according to internal control register setting. The INT pin has an open drain NMOS structure hence a couple of $k\Omega$ pull-up resistor must be required. Two interrupt mode operations are shown in the figure below. In the mode (A), a short interrupt pulse is generated every time the data at the touch detection data status register changes. In the other mode (B), an interrupt pulse maintains low during at least one of 16 channels' touch is coming on the output status register.

Optional interrupt modes of high interrupt pulse polarity selection case

March 2012 v1.0 13 / 25 Product Preview

Chapter 4: Register Description

4-1 I²C Write/Read Operations in Normal Mode

The following figure represents the I²C normal mode write and read registers.

Write operation (Write the data AA and BB to register 0x00 and 0x01)

Start	Device Address 0xB0	ACK	Register Address 0x00	ACK	Data AA	ACK	Data BB	ACK	Stop	
-------	------------------------	-----	--------------------------	-----	---------	-----	---------	-----	------	--

Read operation (Read a data from register 0x00 and 0x01)

Start	Device Address 0xB0	ACK	Register Address 0x00	ACK	Stop		
Start	Device Address 0xB1	ACK	Data Read AA	ACK	Data R BB	 ACKB	Stop

From Master to Slave From Slave to Master

March 2012 v1.0 Product Preview

4-2 Register Map

Addr.	Def.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
00H	0xB0		Rese	erved	<u> </u>	CHIP_	ID[3:2]	Rese	erved	
01H	0x02			Rese	erved	I		RST	TOUCH	
02H		TOUCH_ OUT 8	TOUCH_ OUT 7	TOUCH_ OUT 6	TOUCH_ OUT 5	TOUCH_ OUT 4`	TOUCH_ OUT 3	TOUCH_ OUT 2	TOUCH_ OUT 1	
03H		TOUCH_ OUT 16	TOUCH_ OUT 15	TOUCH_ OUT 14	TOUCH_ OUT 13	TOUCH_ OUT 12	TOUCH_ OUT 11	TOUCH_ OUT 10	TOUCH_ OUT 9	
04H	0xFF	IO_DIR 8	IO_DIR 7	IO_DIR 6	IO_DIR 5	IO_DIR 4	IO_DIR 3	IO_DIR 2	IO_DIR 1	
05H	0xFF	IO_DIR 16	IO_DIR 15	IO_DIR 14	IO_DIR 13	IO_DIR 12	IO_DIR 11	IO_DIR 10	IO_DIR 9	
06H	0x44	SLEEP	MULTI_ MODE	PWM_EN	INT_MOD E		SEN_ID	LE_TIME		
07H	0x1A		Reserved	1		EXP_TIME		EXP_EN	EXP_ MODE	
10H	0x0F	Rese	erved		,	SENSIT	TIVITY 1			
11H	0x0F	Rese	erved			SENSIT				
12H	0x0F	Rese	erved		SENSITIVITY 3					
13H	0x0F	Rese	erved	SENSITIVITY 4						
14H	0x0F	Rese	erved		SENSITIVITY 5					
15H	0x0F	Rese	erved		SENSITIVITY 6					
16H	0x0F	Rese	erved		SENSITIVITY 7					
17H	0x0F	Rese	erved	SENSITIVITY 8						
18H	0x0F	Rese	erved			SENSIT	TIVITY 9			
19H	0x0F	Rese	erved			SENSIT	IVITY 10			
1AH	0x0F	Rese	erved			SENSIT	IVITY 11			
1BH	0x0F	Rese	erved			SENSIT	IVITY 12			
1CH	0x0F	Rese	erved			SENSIT	IVITY 13			
1DH	0x0F	Rese	erved			SENSIT	IVITY 14			
1EH	0x0F	Rese	erved	SENSITIVITY 15						
1FH	0x0F	Reserved		SENSITIVITY 16						
20H	0x1F	Reserved			PWM_DATA 1					
21H	0x1F		Reserved				PWM_DATA 2	2		

Addr.	Def.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
22H	0x1F		Reserved			PWM_DATA 3					
23H	0x1F		Reserved			PWM_DATA 4					
24H	0x1F		Reserved				PWM_DATA 5	5			
25H	0x1F		Reserved				PWM_DATA 6	3			
26H	0x1F		Reserved				PWM_DATA 7	7			
27H	0x1F		Reserved				PWM_DATA 8	3			
28H	0x1F		Reserved				PWM_DATA 9)			
29H	0x1F		Reserved		PWM_DATA 10						
2AH	0x1F		Reserved			ı	PWM_DATA 1	1			
2BH	0x1F		Reserved			F	PWM_DATA 1	2			
2CH	0x1F		Reserved			F	PWM_DATA 1	3			
2DH	0x1F		Reserved			PWM_DATA 14					
2EH	0x1F		Reserved			PWM_DATA 15					
2FH	0x1F		Reserved			F	PWM_DATA 1	6			
30H	0x1F		Reserved			PV	VM_DATA OU	T 1			
31H	0x1F		Reserved		PWM_DATA OUT 2						
32H	0x1F		Reserved		PWM_DATA OUT 3						
33H	0x1F		Reserved			PV	VM_DATA OU	Т 4			
34H	0x00		Rese	rved		POL_OUT 4	POL_OUT	POL_OUT 2	POL_OUT		

4-3-1 I²C CHIP ID Registers - R/W

Description: The GT216L chip ID can be set bit[1] by ID_SEL pin and bit[3:2] by register.

(See 3-7 ID_SEL pin Selection)

00H		Bit7	Bit6	Bit6 Bit5		Bit3	Bit2	Bit1	Bit0
Name		Reserved				CHIP_ID[3:2]		Reserved	Reserved
Defaul	t	1 0 1		1	0	0	X	0	
Addr.	Bits	Default		Name		Description			
	7-4	BH	Re	eserved	Fixed "1011	" = 0xBH			
	3-2	00B	CHI	CHIP_ID[3:2]		GT216L chip ID			
00H	1	ХВ	Re	eserved	This bit is set by ID_SEL pin.				
	0	0B	Re	eserved	Don't write				

4-3-2 Interrupt status Registers - R/W

Description: This register indicate the status of interrupt of GT216L. This register is needed to

check after an interrupt signal occur.

01H		Bit7	Bit6	Bit6 Bit5		Bit3	Bit2	Bit1	Bit0	
Name				Rese	erved			RST	TOUCH	
Defaul	t	0 0 0				0	0	1	0	
Addr.	Bits	Default		Name		Description				
	7-2	000000H	l Re	eserved						
01H	1	1B		RST		It's set '1' when GT216L is reset.				
	0	0B	Т	TOUCH		It's set '1' when touch detection occur.				

4-3-3 Touch Out Registers - R

Description: This register indicate the status of interrupt of GT216L. This register is needed to

check after an interrupt signal occurred.

XXH		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name					Touch	Touch Out n					
Default	0 0 0				0	0	0	0	0		
Addr.	Bits	Default		Name	Description						
02H	7-0	H	Tou	Touch Out n		Out detection tection.					
03H	7-0	H	Tou	ich Out n	MSB Touch 0: No touch 1: Touch de	detection					

4-3-4 IO Direction Registers – R/W

Description: GT216L has 16 ports which can be selected analog input or digital output ports. The

Bit3

Bit2

Bit4

Bit5

directions are set by this register.

XXH Bit7 Bit6

Name					IO_C	DIR n					
Default	Default 1 1 1		1	1	1	1	1				
Addr.	Bits	Bits Default Name				Description					
04H	7-0	FFH	IC)_DIR n	LSB IO_DIF 0: digital ou 1: analog in	tput (PWM)					
05H	7-0	FFH	IC)_DIR n	MSB IO_DI 0: digital ou 1: analog in	tput (PWM)					

March 2012 v1.0 Product Preview

Bit1

Bit0

4-3-5 General1 Control Registers - R/W

Description: The GT216L supports control registers for meeting various user applications.

06H	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name	SLEEP	MUTI_ MODE	Reserved	INT_MODE	SEN_IDLE_TIME			
Default	0	1	0	0	0	1	0	0

Addr.	Bits	Default	Name	Description
	7	0B	SLEEP	Current consumption can be saved in sleep mode. And GT216L is initialized when the bit change from 1 to 0 but the values of register are kept. 0: Normal operation mode 1: Sleep mode
	6	1B	MUTI_MODE	0: Only one channel can be touched at a time. (Single mode) 1: Multi channels are touched at a time. (Multi mode)
	5	0B	PWM_EN	PWM can be enabled. 0: PWM disable 1: PWM enable
	4	0B	INT_MODE	Interrupt operation mode 0: toggle mode (touch on/off) 1: level mode
06H	3-0	0100B	SEN_IDLE_TIME	Sensing idle time. 0000: 0 ms 0001: 5ms 0010: 10ms 0011: 20ms 0100: 30ms 0101: 40ms 0110: 50ms 0111: 60ms 1000: 70ms 1000: 70ms 1010: 90ms 1011: 100ms 1100: 200ms 1101: 300ms 1111: 400ms

4-3-6 Expiration Control Registers - R/W

Description: The GT216L supports control registers for meeting various user applications.

3DH	Е	3it7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name			Reserved			EXP_TIME[5:3	EXP_ EN	EXP_ MODE	
Default	t 0 0 0		1	1	1	0			
Addr.	Bits	Default	1	Name			Description		

Addr.	Bits	Default	Name	Description
	7-5	000B	Reserved	
0711	4-2	110B	EXP_TIME[5:3]	Time = (EXP_TIME[5:3],3'b111) x 16 x (SEN_IDLE_TIME(06H) + SENSING_TIME) (def. = 35 sec)
07H	1	1B	EXP_EN	Touch expire enable 0: Disable 1: Enable
	0	0B	EXP_ MODE	Touch expire mode 0: Expire count is not restarted in a touch state 1: Expire count is restarted if a different touch occur

March 2012 v1.0 18 / 25 Product Preview

4-3-7 Sensitivity Control Registers - R/W

Description: The GT216L can be controlled independently for getting the optimal sensitivity on each channel.

XXH	Bit7		Bit6 Bit5		Bit4	Bit3	Bit2	Bit1	Bit0		
Name		Reserve	ed			SENSIT	IVITY n				
Default		0	0	0	0	1	1	1	1		
Addr.	Bits	Default	1	Name			Description				
	7-6	00B	Re	eserved							
10H	5-0	0FH	SENS	SITIVITY 1	0x02 : High	Channel 1 touch sensitivity 0x02 : Highest Sensitivity 0x3F : Lowest Sensitivity					
	7-6	00B	Re	eserved							
11H	5-0	0FH	SENSITIVITY 2		0x02 : High	Channel 2 touch sensitivity 0x02 : Highest Sensitivity 0x3F : Lowest Sensitivity					
	7-6	00B	Reserved								
12H	5-0	0FH	SENS	SITIVITY 3	0x02 : High	ouch sensitivity est Sensitivity est Sensitivity					
	7-6	00B	Re	eserved							
13H	5-0	0FH	SENS	SITIVITY 4	0x02 : High	ouch sensitivity est Sensitivity est Sensitivity					
	7-6	00B	Re	eserved							
14H	5-0	0FH	SENSITIVITY 5		0x02 : High	ouch sensitivity est Sensitivity est Sensitivity					
15H	7-6	00B	Reserved								
	5-0	0FH	SENSITIVITY 6		0x02 : High	ouch sensitivity est Sensitivity est Sensitivity					
	7-6	00B	Re	eserved							
16H	5-0	0FH	SENS	SITIVITY 7	0x02 : High	ouch sensitivity est Sensitivity est Sensitivity					
	7-6	00B	Reserved								
17H	5-0	0FH	SENS	SITIVITY 8	0x02 : High	ouch sensitivity est Sensitivity est Sensitivity					
	7-6	00B	Re	eserved							
18H	5-0	0FH	SENS	SITIVITY 9	Channel 9 touch sensitivity 0x02 : Highest Sensitivity 0x3F : Lowest Sensitivity						
	7-6	00B	Re	eserved							
19H	5-0	0FH	SENS	ITIVITY 10	0x02 : High	touch sensitivit est Sensitivity est Sensitivity	у				
	7-6	00B	Re	eserved							
1AH	5-0	0FH	SENS	ITIVITY 11	Channel 11 touch s 0x02 : Highest Sen 0x3F : Lowest Sen		у				
	7-6	00B	Re	eserved							
1BH	5-0	0FH	SENS	ITIVITY 12	0x02 : High	touch sensitivit est Sensitivity est Sensitivity	у				
	7-6	00B	Re	eserved							
1CH	5-0	0FH	SENS	ITIVITY 13	0x02 : High	touch sensitivit est Sensitivity est Sensitivity	у				

March 2012 v1.0 19 / 25 Product Preview

Addr.	Bits	Default	Name	Description
	7-6	00B	Reserved	
1DH	5-0 0FH		SENSITIVITY 14	Channel 14 touch sensitivity 0x02 : Highest Sensitivity 0x3F : Lowest Sensitivity
	7-6	00B	Reserved	
1EH	5-0 OFH		SENSITIVITY 15	Channel 15 touch sensitivity 0x02 : Highest Sensitivity 0x3F : Lowest Sensitivity
	7-6	00B	Reserved	
1FH	5-0	-0 0FH SENSITIVITY 16		Channel 16 touch sensitivity 0x02 : Highest Sensitivity 0x3F : Lowest Sensitivity

4-3-8 PWM Control Registers - R/W

Description: The GT216L supports each PWM period registers.

XXH	Bit7		Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Name							PWM_DATA n		
Default		0	0	0	0	0	0	0	0
Addr.	Bits	Default	Name				Description		
	7-5	000B	Re	eserved					
20H	4-0) 1FH		1_DATA 1	PWM1 duty 0x00 : GND 0x1F : VDD				
	7-5	000B	Re	eserved					
21H	4-0	1FH	PWN	PWM_DATA 2		rate output			
	7-5	000B	Re	eserved					
22H	4-0	1FH	PWM_DATA 3		PWM3 duty 0x00 : GND 0x1F : VDD				
	7-5	000B	Re	eserved					
23H	4-0	1FH	PWN	1_DATA 4	PWM4 duty 0x00 : GND 0x1F : VDD				
	7-5	000B	Re	eserved					
24H	4-0	1FH	PWN	1_DATA 5	PWM5 duty 0x00 : GND 0x1F : VDD				
	7-5	000B	Re	eserved					
25H	4-0	1FH	PWN	PWM_DATA 6		rate output			
	7-5	000B	Re	eserved					
26H	4-0	1FH	PWN	PWM_DATA 7		rate output			
	7-5	000B	Re	eserved					
27H	4-0	1FH	PWN	1_DATA 8	PWM8 duty 0x00 : GND 0x1F : VDD				
	7-5	000B	Re	eserved					
28H	4-0	1FH	PWN	1_DATA 9	PWM9 duty 0x00 : GND 0x1F : VDD				
	7-5	000B	Re	eserved					
29H	4-0	1FH	PWM	_DATA 10	PWM10 dut 0x00 : GND 0x1F : VDD				

March 2012 v1.0 20 / 25 Product Preview

Addr.	Bits	Default	Name	Description
	7-5	000B	Reserved	
2AH	4-0	1FH	PWM_DATA 11	PWM11 duty rate output 0x00 : GND 0x1F : VDD
	7-5	000B	Reserved	
2BH	4-0	1FH	PWM_DATA 12	PWM12 duty rate output 0x00 : GND 0x1F : VDD
	7-5	000B	Reserved	
2CH	4-0	1FH	PWM_DATA 13	PWM13 duty rate output 0x00 : GND 0x1F : VDD
	7-5	000B	Reserved	
2DH	4-0	1FH	PWM_DATA 14	PWM14 duty rate output 0x00 : GND 0x1F : VDD
	7-5	000B	Reserved	
2EH	4-0	1FH	PWM_DATA 15	PWM15 duty rate output 0x00 : GND 0x1F : VDD
	7-5	000B	Reserved	
2FH	4-0	1FH	PWM_DATA 16	PWM 16 duty rate output 0x00 : GND 0x1F : VDD

4-3-9 PWM Control Registers for exclusive output - R/W

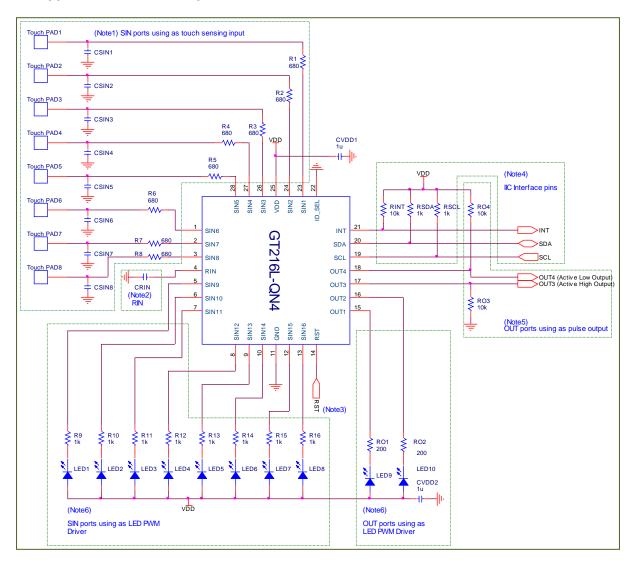
Description: The GT216L supports each PWM period registers.

XXH	<u> </u>	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Name						PWM_						
Default	Default 0		0	0	0	0	0	0	0			
Addr.	Bits	Default	1	Name		Description						
	7-5	000B	Re	eserved								
30H	4-0	0 1FH	PWM I	DATA OUT 1	PWM OUT 0x00 : GND 0x1F : VDD		out					
	. •		FWW_DATA OUT T		0x00: GND	When 0x06H[5] 'PWM_EN' is set '0'. 0x00: GND Otherwise: VDD						
	7-5	000B	Re	eserved								
31H	4-0	1FH	PWM_I	DATA OUT 2	PWM OUT 2 duty rate output 0x00 : GND 0x1F : VDD When 0x06H[5] 'PWM_EN' is set '0'. 0x00: GND Otherwise : VDD							
	7-5	000B	Re	eserved								
32H	4-0	1FH	PWM_I	DATA OUT 3	0x00 : GND 0x1F : VDD							
					0x00: GND Otherwise :		13 301 0 .					
	7-5	000B	Re	eserved								
33H	4-0	4-0 1FH	TH PWM DATA OUT	OATA OUT 4	PWM OUT 0x00 : GND 0x1F : VDD		out					
		4-0 1		FWW_DATA OUT 4		When 0x06 0x00: GND Otherwise:		' is set '0'.				

March 2012 v1.0 21 / 25 Product Preview

4-3-10 Output polarity for exclusive output - R/W

Description: The GT216L has 4 exclusive output ports. These ports can be selected polarity.


XXH		Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Name		Reserved				POL_OUT4	POL_OUT3	POL_OUT2	POL_OUT1		
Default	t	0	0	0	0 0 0			0	0		
Addr.	Bits	Default	ı	Name		Description					
	7-4	0000B	Re	eserved							
	3	0B	PO	L_OUT4	0: active lov	Output 4 polarity 0: active low 1: active high					
34H	2	0B	РО	L_OUT3	Output 3 po 0: active lov 1: active high	V					
	1	0B	РО	L_OUT2	0: active lov	Output 2 polarity 0: active low 1: active high					
	0	0B	РО	L_OUT1	Output 1 po 0: active lov 1: active hig	V					

March 2012 v1.0 22 / 25 Product Preview

Application Notes GT216L

Chapter 5: Application Notes

5-1 Application Circuit Example

Application example circuit for GT216L

5-2 Application Notes

Normally a touch sensing operation is ultimately impedance variation sensing. Hence a touch sensing system is recommended to be taken care of prevention of the external sensing disturbance. Although the GT216L has enough noise rejection algorithms and various internal protection circuits to prevent error touch detection caused by noise and incapable sensing, it is better to take care in noisy applications such as home appliances. There are many measurable or invisible noises in system that can affect the impedance sensing signal or distort that signal. The main principal design issues and required attentions are such as below.

5-2-1 Power Line

- The touch sensor power line is recommended to be split from the other power lines such as relay circuits or LED power that can make pulsation noise on power lines.
- The big inductance that might exist in long power connection line can cause power fluctuation by other noise sources.
- The lower frequency periodic power noise such as a few Hz ~ kHz has more baneful influence on sensitivity calibration.

March 2012 v1.0 23 / 25 Product Preview

Application Notes GT216L

- An extra regulator for touch sensor is desirable for prevention above power line noises.
- The V_{DD} under shooting pulse less than internal reset voltage (V_{DD RST}) can cause system reset.
- The capacitor connected between V_{DD} and GND is somehow obligation element for buffering above power line noises. This capacitor must be placed as near to IC as possible.

5-2-2 Sensing (Reference) Input Line for Touch Detect <Note1><Note2>

- The sensing lines for touch detection are desirable to be routed as short as possible and the width of routing path should be as narrow as possible.
- The sensing line for touch detection should be formed by bottom metal, in other words, an opposite metal of a touch PAD.
- The additional extension line pattern of RIN input on application PCB can help prevention of abnormal actions caused by radiation noise, but excessive long RIN input line can be a reason for failure of touch detect.
- SIN capacitor is useful for sensitivity reduction adjust. A bigger capacitor of SIN makes sensitivity
 of corresponding channel to be lower.
- RIN capacitor value is about average value of total capacitance of each SIN touch sensing inputs.
- The sensing line for touch detection is desirable to be routed as far as possible from impedance varying path such as LED drive current path.
- An unused sensing channel is desirable to be turned off by control register. (Recommendation)
- Additional external series resistors are profitable for prevention of abnormal actions caused by radiation noise or electrical surge pulse. The series resistor value should be less than $1k\Omega$ and the location of resister is better as near as possible to the SIN ports for better stable operation. (Refer to 3-3)
- All touch sensing pads are recommended to be surrounded by GND pattern to reduce noise influence.

5-2-4 External Reset < Note3>

• The RST port is for the abrupt reset input signal. The low signal pulse can make system reset. This port has also an internal pull-up resistor hence the RST port can be floating. (Refer to 3-1)

5-2-5 I²C Interface Applications <Note4>

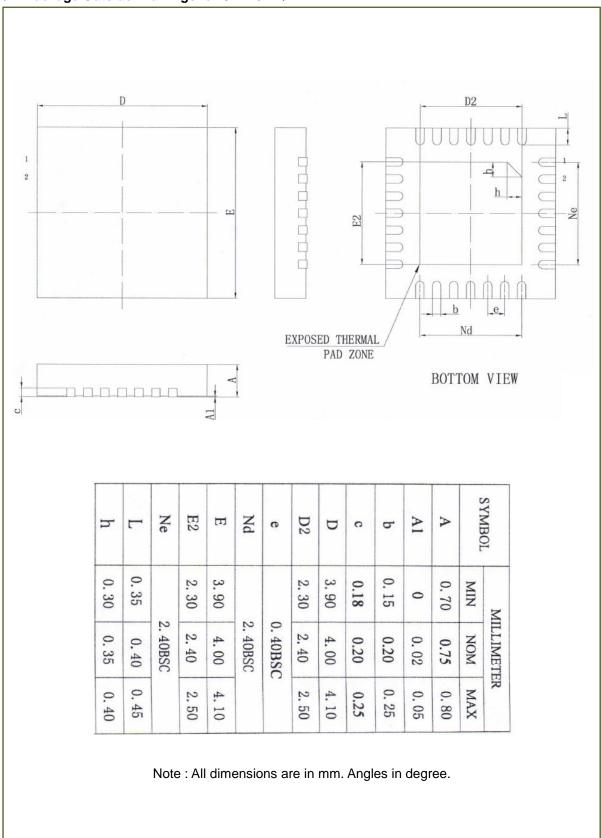
- The SCL is I²C clock input port and SDA is I²C data input/output port. SCL and SDA have internal optional pull-up resistor. So, when I²C interface is not required, SCL and SDA ports can be floating. For high speed communication, SDA port needs small pull-up resistor connected to V_{DD} to reduce pulse rising delay. (Refer to 3-5)
- INT is for the output signal that indicates changing of sensing output data. This port is output only port and has active low function. Because INT pin has open drain structure, pull-up resistor is required for valid output.(Refer to 3-6)

5-2-7 OUT ports for Pulse Output <Note5>

- The OUT [1:4] ports that are used pulse output have an active low and high output mode. Both output modes are all open drain type. Therefore a pull-up or a pull-down resistor is required for a valid output. These output signals of OUT ports can be controlled by internal control register via I²C. (Refer to 3-4)
- Each OUT [1:4] ports has sinking current ability typical 25mA and sourcing current ability typical 15mA on typical temperature condition.. (Refer to 3-4)

5-2-8 LED PWM Drive Applications < Note6>

- The maximum 10mA LED drive current can be sunk by a single SIN port on typical temperature condition. The SIN ports which are used as LED PWM drive ports cannot carry out the role of touch sensing input simultaneously. The 32 steps brightness control is possible. (Refer to 3-3)
- More high current LED drive is possible by using OUT [1:4] port which sinking current ability typical 25mA on typical temperature condition.
- To prevent V_{DD} line from being fluctuated by LED drive current a additional capacitor (CVDD2) is recommended.


5-2-9 ID_SEL and Exposed Pad

- ID_SEL port must be connected to V_{DD} or GND. Open connection is not permitted.
- Exposed pad of package must be connected to GND.

March 2012 v1.0 24 / 25 Product Preview

Chapter 6: Package information

6-1 Package Outside Drawings for GT216L-QN4

March 2012 v1.0 25 / 25 Product Preview